File size: 6,301 Bytes
0a59d21
2ea4855
 
 
e51a809
0d3f2ef
2ea4855
3106295
85ff963
72363cc
 
85ff963
8442a03
10251e6
 
 
5499763
 
2ea4855
 
85ff963
a89e2e5
 
 
2ea4855
 
 
 
0a59d21
 
2ea4855
 
 
 
 
 
 
 
 
2709137
2ea4855
 
 
 
 
 
 
 
 
 
5a4895d
2ea4855
 
 
 
 
 
 
 
 
 
 
5a4895d
2ea4855
 
5a4895d
 
 
2ea4855
 
0a59d21
 
2ea4855
3106295
999aaf7
2ea4855
 
0a59d21
 
 
 
 
2ea4855
 
 
0a59d21
2ea4855
0a59d21
2ea4855
0a59d21
2ea4855
 
 
0a59d21
8290e1d
0a59d21
2ea4855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3ae19
 
0a59d21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import sys
from subprocess import run
from PIL import Image
import os
import base64

#run("pip install flash-attn --no-build-isolation", shell=True, check=True)
run("pip install --upgrade pip", shell=True, check=True)
run("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124", shell=True, check=True)




from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig

model_id = "ibm-granite/granite-vision-3.2-2b"
#model_id = "Portx/granite-vision-3.1-2b-preview-do-extractor"

bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
        llm_int8_skip_modules=["vision_tower", "lm_head"],
        llm_int8_enable_fp32_cpu_offload=True
)

# check for GPU
device = 0 if torch.cuda.is_available() else -1

class Utils:
    def convert_base64_to_jpg(base64_string):
        image_data = base64.b64decode(base64_string)
        with open("./do_img.jpg", 'wb') as f:
            f.write(image_data)

class PromptSet:
    system_message = "You are an expert in analyzing and extracting information from freight, shipment, or delivery orders. Please carefully read the provided order file and extract the following 10 key pieces of information. Ensure that the key names are exactly as listed below. Do not create any additional key names other than these. If any information is missing or unavailable, output '-'."
    main_order_information_prompt = """#Key names and their descriptions:
    1. container_number: The container number/no of the shipment (e.g., TRKU2038448, MSDU8549321). This should be an 11-character container number, with no additional format. If not available, output '-'.
    2. bill_of_lading: The Bill of Lading number, which could include formats such as B/L No., AWS No., BL No., or ocean Bill of Lading (e.g., AXVJMER000008166, TRKU-10152009, HLCU ALY241000275). If not available, output '-'.
    3. importing_carrier: The importing or ocean carrier, which may include SCAC codes, carrier's local agents, or sea line codes. If not available, output '-'.
    4. origin_address: The address for picking up the container, such as the origin address, pickup location, terminal, or port of discharge. Exclude loading location information. (e.g., "PORT LIBERTY NY CONTAINER TERMINAL 300 WESTERN AVE"). If not available, output '-'.
    5. destination_address: The address where the container is to be delivered, typically a company name or a specific delivery location (e.g., "AERO RECEIVING EAST, 2 BRICK PLANT ROAD, SOUTH RIVER, NJ"). If not available, output '-'.
    6. container_weight: The weight of the container (in numeric format, e.g., 58,201.44). If there are multiple weights, output the highest value. If not available, output '-'.
    7. container_weight_unit: The unit of measurement for the container's weight (e.g., LBS, KGS, KG, LB). If not available, output '-'.
    8. container_type: The type/size of the container (e.g., 40HC, 20GP FCL). If not available, output '-'.
    9. po_number: The purchase order number or customer’s PO (e.g., PO Number, customer’s PO, consol). If not available, output '-'.
    10. reference_number: The reference number, file number, or any internal reference (e.g., reference number, our ref no.). If not available, output '-'.
    #Output:
    {container_number: ...,
    bill_of_lading: ..,
    importing_carrier: ...,
    origin_address: ...,
    destination_address: ...,
    container_weight: ...,
    container_weight_unit: ...,
    container_type: ...,
    po_number: ...,
    reference_number: ...
    }
    Guidelines:
    - Very important: do not make up anything. If the information of a required field is not available, output '-' for it.
    - Output in JSON format. The JSON should contain the above 10 keys.
    """
    order_list_prompt = "How much container are there? Give to me all container numbers only in a json array?"
    multiple_container_information_prompt = "Give to me container weight, container weight unit,the container size (with type) of {query} in the same line with container_number:{query}.You must response only in a JSON format. Example output is must be 'container_number': 'OOCU6979480', 'container_type': '40HC or DV', 'weight': '46,737.52', 'weight_unit': 'LB'"


class EndpointHandler():
    def __init__(self, path=""):
        self.model=AutoModelForVision2Seq.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,
                                                          quantization_config=bnb_config)
        #self.model.load_adapter("Portx/granite-vision-3.2-2b-20252802")
        self.processor = AutoProcessor.from_pretrained(model_id, use_fast=True)

    def __call__(self, data):
        # deserialize incomin request
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)
        prompt_id = data.pop("prompt_id", None)
        base64_image = data.pop("image", None)

        converted_image = Utils.convert_base64_to_jpg(base64_image)

        
        if prompt_id==1:
            final_prompt=PromptSet.main_order_information_prompt
        elif prompt_id==2:
            final_prompt=PromptSet.order_list_prompt
        elif prompt_id==3:
            final_prompt=PromptSet.multiple_container_information_prompt
        else:
            final_prompt=inputs
            


        conversation = [{
            "role": "system",
            "content": [
                {
                    "type": "text",
                    "text": PromptSet.system_message
                }
            ],
        },{
        "role": "user",
        "content": [
            {"type": "image", "url": "./do_img.jpg"},
            {"type": "text", "text": final_prompt},
        ],},
                       ]

        model_inputs = self.processor.apply_chat_template(conversation,add_generation_prompt=True,
                                                          tokenize=True, return_dict=True,return_tensors="pt").to(device)
        

        output = self.model.generate(**model_inputs, max_new_tokens=512)
        prediction = self.processor.decode(output[0], skip_special_tokens=True)
        return prediction