File size: 14,418 Bytes
09d339d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyOA6q4xuqXb0BaHFu0tHC2h"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"#Pet Image Segementation Using Modified U-Nets built on the Oxford IIIT Pets Dataset"
],
"metadata": {
"id": "JiICHTic5xBd"
}
},
{
"cell_type": "markdown",
"source": [
"Image Segementation is the process on taking an image as an input and indivually labling if each pixel is part of the object, bording the object, or is not part of the object. The Oxford IIIT Pets Dataset is perfect for this. It is a 37 category database with around 200 images in each category. We can further increase this with data augmentation. All of the images have a corresponding mask which has all the pixels divided into 3 classes: on the pet, bordering the pet, or outside the pet. Using this, we can train a modified U-Net to predict these masks when faced with new images. This model has acheived a 92% accuracy on the validation data, which is very high considering that we can further improve this with more epoches and model tuning."
],
"metadata": {
"id": "kokOKokS7GY8"
}
},
{
"cell_type": "markdown",
"source": [
"We must first begin by importing the nessesary libaries into our program. We will be using TensorFlow and Keras to build and train the model, MatPlotLib to show our images and masks, and TensorFlow Datasets to access our dataset."
],
"metadata": {
"id": "AmBgUS1G96ve"
}
},
{
"cell_type": "markdown",
"source": [
"##Preparing Our Data To Be Processed"
],
"metadata": {
"id": "CZdG-a5yBBlR"
}
},
{
"cell_type": "code",
"source": [
"!pip install git+https://github.com/tensorflow/examples.git\n",
"\n",
"import tensorflow as tf\n",
"import tensorflow_datasets as tfds\n",
"from tensorflow_examples.models.pix2pix import pix2pix\n",
"import matplotlib.pyplot as plt\n"
],
"metadata": {
"id": "jERRrqR--f1G"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now that we have imported all of our libraries, we can start to load the dataset and get ready for the data to be processed."
],
"metadata": {
"id": "D6BjANjW_aFS"
}
},
{
"cell_type": "code",
"source": [
"dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)\n",
"\n",
"TRAIN_LENGTH = info.splits['train'].num_examples\n",
"BATCH_SIZE = 64\n",
"BUFFER_SIZE = 1000\n",
"STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE"
],
"metadata": {
"id": "dkemyqs7_q-q"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Next, we will make a load_image function that will resize the image and the mask to (128, 128). We will also make a function to normizlize the image, which will reduce the value range of the image from (0, 255) to (0, 1)."
],
"metadata": {
"id": "jeN_rXKz_5Qr"
}
},
{
"cell_type": "code",
"source": [
"def load_image(datapoint):\n",
" input_image = tf.image.resize(datapoint['image'], (128, 128))\n",
" input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128), method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)\n",
" input_image, input_mask = normalize_image(input_image, input_mask)\n",
" return input_image, input_mask\n",
"\n",
"def normalize_image(input_image, input_mask):\n",
" input_image = tf.cast(input_image, tf.float32) / 255.0\n",
" input_mask -= 1\n",
" return input_image, input_mask"
],
"metadata": {
"id": "l5NFCx12AqDx"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We will also now need to add our data augmentation. This will be impletemented in the form of a class and will randomly flip our images and masks using a set seed."
],
"metadata": {
"id": "K2en1ZvABmMP"
}
},
{
"cell_type": "code",
"source": [
"class Augment(tf.keras.layers.Layer):\n",
" def __init__(self, seed=42):\n",
" super().__init__()\n",
" self.augment_inputs = tf.keras.layers.RandomFlip(mode=\"horizontal\", seed=seed)\n",
" self.augment_labels = tf.keras.layers.RandomFlip(mode=\"horizontal\", seed=seed)\n",
"\n",
" def call(self, inputs, labels):\n",
" inputs = self.augment_inputs(inputs)\n",
" labels = self.augment_labels(labels)\n",
" return inputs, labels"
],
"metadata": {
"id": "XBVo-uRzB8Vc"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now we can group our images into batches to be processed."
],
"metadata": {
"id": "7YBY0UvfA5El"
}
},
{
"cell_type": "code",
"source": [
"train_images = dataset['train'].map(load_image, num_parallel_calls=tf.data.AUTOTUNE)\n",
"test_images = dataset['test'].map(load_image, num_parallel_calls=tf.data.AUTOTUNE)\n",
"\n",
"train_batches = (train_images.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat().map(Augment()).prefetch(buffer_size=tf.data.AUTOTUNE))\n",
"test_batches = test_images.batch(BATCH_SIZE)"
],
"metadata": {
"id": "fAvQHyxABNH3"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"##Creating and Training the Model"
],
"metadata": {
"id": "GIcff6fzCSKR"
}
},
{
"cell_type": "markdown",
"source": [
"First we will begin by creating our base model. It will be based on the pretrained MobileNetV2 model. We will also create the second model, which will be based on pix2pix.\n"
],
"metadata": {
"id": "GyY1EnvXCgKY"
}
},
{
"cell_type": "code",
"source": [
"base_model = tf.keras.applications.MobileNetV2(input_shape=[128, 128, 3], include_top=False)\n",
"\n",
"layer_names = [\n",
" 'block_1_expand_relu',\n",
" 'block_3_expand_relu',\n",
" 'block_6_expand_relu',\n",
" 'block_13_expand_relu',\n",
" 'block_16_project',\n",
"]\n",
"base_model_outputs = [base_model.get_layer(name).output for name in layer_names]\n",
"\n",
"down_stack = tf.keras.Model(inputs=base_model.input, outputs=base_model_outputs)\n",
"\n",
"down_stack.trainable = False\n",
"\n",
"up_stack = [pix2pix.upsample(512, 3), pix2pix.upsample(256, 3), pix2pix.upsample(128, 3), pix2pix.upsample(64, 3),]\n"
],
"metadata": {
"id": "KdEkW6IRC0tf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now we can define the function that will make our U-Net Model."
],
"metadata": {
"id": "udgKbAzTDclx"
}
},
{
"cell_type": "code",
"source": [
"def U_net_model(output_channels:int, down_stack, up_stack):\n",
" inputs = tf.keras.layers.Input(shape=[128, 128, 3])\n",
" skips = down_stack(inputs)\n",
" outputs = skips[-1]\n",
" skips = reversed(skips[:-1])\n",
"\n",
" for up, skip in zip(up_stack, skips):\n",
" outputs = up(outputs)\n",
" concatenate = tf.keras.layers.Concatenate()\n",
" outputs = concatenate([outputs, skip])\n",
"\n",
" last = tf.keras.layers.Conv2DTranspose(filters=output_channels, kernel_size=3, strides=2, padding='same')\n",
" outputs = last(outputs)\n",
" return tf.keras.Model(inputs=inputs, outputs=outputs)"
],
"metadata": {
"id": "bfkx81pCDjCe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now we can finally create and compile the model."
],
"metadata": {
"id": "0oSXkajXDsQk"
}
},
{
"cell_type": "code",
"source": [
"OUTPUT_CLASSES = 3\n",
"\n",
"model = U_net_model(OUTPUT_CLASSES, down_stack, up_stack)\n",
"model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])"
],
"metadata": {
"id": "922GC6FhD6cw"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"It is now time to train the model we have just built using the train and test batches."
],
"metadata": {
"id": "0VJaMpmvD9k7"
}
},
{
"cell_type": "code",
"source": [
"EPOCHS = 20\n",
"VAL_SUBSPLITS = 5\n",
"VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS\n",
"\n",
"model.fit(train_batches, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_steps=VALIDATION_STEPS, validation_data=test_batches)"
],
"metadata": {
"id": "He629X5qE4j5"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now we can save the model in three different formats for later use. We will be saving it in the legacy .h5 format, the new .keras format, and the TensorFlow SavedModel."
],
"metadata": {
"id": "5jV9jQwyFKeb"
}
},
{
"cell_type": "code",
"source": [
"model.save(\"pets.h5\")\n",
"model.save(\"pets.keras\")\n",
"model.save(\"model/dogs\")"
],
"metadata": {
"id": "4PCorPKVG-4_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"##Predict Using the Model"
],
"metadata": {
"id": "3YSb402_NTwm"
}
},
{
"cell_type": "markdown",
"source": [
"Now we will use our model to predict a mask against new data. But first, we must load the model off the disk."
],
"metadata": {
"id": "xmb_EUTQNjEh"
}
},
{
"cell_type": "code",
"source": [
"def attempt_load(i):\n",
" try:\n",
" model = tf.keras.models.load_model('pets'+names[i])\n",
" return model\n",
" except:\n",
" attempt_load(i+1)\n",
"\n",
"names = ['.keras', '', '.h5']\n",
"\n",
"model = attempt_load(0)"
],
"metadata": {
"id": "jXiX1ghnN2py"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now we need to create our predicted mask."
],
"metadata": {
"id": "bdb37QuKRyfG"
}
},
{
"cell_type": "code",
"source": [
"def create_mask(pred_mask):\n",
" pred_mask = tf.math.argmax(pred_mask, axis=-1)\n",
" pred_mask = pred_mask[..., tf.newaxis]\n",
" return pred_mask[0]"
],
"metadata": {
"id": "7QUSGR3YSPna"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We also need a function that can display the image and the predicted mask."
],
"metadata": {
"id": "ogVrMFQFSS6t"
}
},
{
"cell_type": "code",
"source": [
"def display(display_list):\n",
" plt.figure(figsize=(15, 15))\n",
" titles = ['Input Image', 'Predicted Mask']\n",
" for i in range(len(display_list)):\n",
" plt.subplot(1, len(display_list), i+1)\n",
" plt.title(titles[i])\n",
" plt.imshow(tf.keras.utils.array_to_img(display_list[i]))\n",
" plt.axis('off')\n",
" plt.show()"
],
"metadata": {
"id": "fyAdwN8KStsb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Finally, we need a way to get the users' picture and use our model to predict the mask for that picture."
],
"metadata": {
"id": "ZSoCGr2hSvJN"
}
},
{
"cell_type": "code",
"source": [
"def show_predictions(image_url, model):\n",
" image = tf.keras.utils.get_file(origin=image_url)\n",
" image = tf.keras.utils.load_img(image)\n",
" image = tf.keras.utils.img_to_array(image)\n",
" image = tf.image.resize(image, (128,128))\n",
" image = tf.cast(image, tf.float32) / 255.0\n",
" image = tf.expand_dims(image, axis=0)\n",
" pred_mask = model.predict(image)\n",
" display([image[0], create_mask(pred_mask)])"
],
"metadata": {
"id": "QrApNNhCeRYK"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"And now lets wrap it all together!"
],
"metadata": {
"id": "eyqUFmFfeUT_"
}
},
{
"cell_type": "code",
"source": [
"while True:\n",
" url = input(\"Please enter an image url:\")\n",
" try:\n",
" image = tf.keras.utils.get_file(origin=url)\n",
" image = tf.keras.utils.load_img(image)\n",
" break\n",
" except:\n",
" print(\"That is not a valid link\")\n",
"\n",
"show_predictions(url, model)"
],
"metadata": {
"id": "is94T8gBeYle"
},
"execution_count": null,
"outputs": []
}
]
} |