File size: 6,114 Bytes
854b0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d8001
 
854b0f8
 
 
 
3e1102c
 
 
21ad637
ca3b614
d8d8001
 
 
 
 
 
ca3b614
3e1102c
 
 
 
 
21ad637
3e1102c
854b0f8
 
 
 
a2e5ee3
 
 
 
 
 
 
 
3e1102c
854b0f8
 
3e1102c
ca3b614
0731990
 
e3f9fc1
fcbad2d
3e1102c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd6973
e3f9fc1
854b0f8
 
 
 
 
ca3b614
854b0f8
ca3b614
854b0f8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
library_name: pruna-engine
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
    <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer">
        <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
    </a>
</div>
<!-- header end -->

[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)


<div style="color: #9B1DBE; font-size: 2em; font-weight: bold;">
    Deprecation Notice: This model is deprecated and will no longer receive updates.
</div>
<br><br>

# Simply make AI models cheaper, smaller, faster, and greener!

- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/rskEr4BZJx) to share feedback/suggestions or get help.

## Results

![image info](./plots.png)

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed by combining xformers, triton, jit, cuda graphs, tiling, and step caching.
- ***How does the model quality change?*** The quality of the model output might slightly vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We used a custom Pruna model format based on pickle to make models compatible with the compression methods. We provide a tutorial to run models in dockers in the documentation [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) if needed.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.

## Setup

You can run the smashed model with these steps:

0. Check that you have linux, python 3.10, and cuda 12.1.0 requirements installed. For cuda, check with `nvcc --version` and install with `conda install nvidia/label/cuda-12.1.0::cuda`.
1. Install the `pruna-engine` available [here](https://pypi.org/project/pruna-engine/) on Pypi. It might take up to 15 minutes to install.
    ```bash
   pip install pruna-engine[gpu]==0.6.0 --extra-index-url https://pypi.nvidia.com --extra-index-url https://pypi.ngc.nvidia.com --extra-index-url https://prunaai.pythonanywhere.com/
    ```
3. Download the model files using one of these three options. 
   - Option 1 - Use command line interface (CLI):
       ```bash
       mkdir CompVis-stable-diffusion-v1-4-turbo-tiny-green-smashed
       huggingface-cli download PrunaAI/CompVis-stable-diffusion-v1-4-turbo-tiny-green-smashed --local-dir CompVis-stable-diffusion-v1-4-turbo-tiny-green-smashed --local-dir-use-symlinks False
       ```
   - Option 2 - Use Python:
       ```python
       import subprocess
       repo_name = "CompVis-stable-diffusion-v1-4-turbo-tiny-green-smashed"
       subprocess.run(["mkdir", repo_name])
       subprocess.run(["huggingface-cli", "download", 'PrunaAI/'+ repo_name, "--local-dir", repo_name, "--local-dir-use-symlinks", "False"])
       ```
   - Option 3 - Download them manually on the HuggingFace model page.
3. Load & run the model.
    ```python
    from pruna_engine.PrunaModel import PrunaModel
   
    model_path = "CompVis-stable-diffusion-v1-4-turbo-tiny-green-smashed/model"  # Specify the downloaded model path.
    smashed_model = PrunaModel.load_model(model_path)  # Load the model.
    smashed_model(prompt='Beautiful fruits in trees', height=512, width=512)[0][0]  # Run the model where x is the expected input of.
    ```

## Configurations

The configuration info are in `config.json`.

## Credits & License

We follow the same license as the original model. Please check the license of the original model CompVis/stable-diffusion-v1-4 before using this model which provided the base model.

## Want to compress other models?

- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).