File size: 1,283 Bytes
6ffba01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import json, torch
from CondRefAR.pipeline import CondRefARPipeline
from transformers import AutoTokenizer, T5EncoderModel

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

gpt_cfg = json.load(open("configs/gpt_config.json"))
vq_cfg  = json.load(open("configs/vq_config.json"))
pipe = CondRefARPipeline.from_pretrained(".", gpt_cfg, vq_cfg, device=device, torch_dtype=dtype)

tok = AutoTokenizer.from_pretrained("google/flan-t5-xl")
enc = T5EncoderModel.from_pretrained("google/flan-t5-xl", torch_dtype=dtype).to(device).eval()

prompt = "Aaerial view of a forested area with a river running through it. On the right side of the image, there is a small town or village with a red-roofed building."
control = "assets/examples/example2.jpg"

from PIL import Image, ImageOps
control_img = Image.open(control).convert("RGB")

inputs = tok([prompt], return_tensors="pt", padding="max_length", truncation=True, max_length=120)
with torch.no_grad():
    emb = enc(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device)).last_hidden_state

imgs = pipe(emb, control_img, cfg_scale=4, temperature=1.0, top_k=2000, top_p=1.0)
imgs[0].save("sample.png")