Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: deepseek
|
| 4 |
+
license_link: LICENSE
|
| 5 |
+
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# QuantFactory/deepseek-coder-6.7b-instruct-GGUF
|
| 10 |
+
This is quantized version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) created using llama.cpp
|
| 11 |
+
|
| 12 |
+
# Model Description
|
| 13 |
+
|
| 14 |
+
<p align="center">
|
| 15 |
+
<img width="1000px" alt="DeepSeek Coder" src="https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/pictures/logo.png?raw=true">
|
| 16 |
+
</p>
|
| 17 |
+
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a> </p>
|
| 18 |
+
<hr>
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
### 1. Introduction of Deepseek Coder
|
| 24 |
+
|
| 25 |
+
Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
|
| 26 |
+
|
| 27 |
+
- **Massive Training Data**: Trained from scratch fon 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
|
| 28 |
+
|
| 29 |
+
- **Highly Flexible & Scalable**: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.
|
| 30 |
+
|
| 31 |
+
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
|
| 32 |
+
|
| 33 |
+
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
### 2. Model Summary
|
| 38 |
+
deepseek-coder-6.7b-instruct is a 6.7B parameter model initialized from deepseek-coder-6.7b-base and fine-tuned on 2B tokens of instruction data.
|
| 39 |
+
- **Home Page:** [DeepSeek](https://deepseek.com/)
|
| 40 |
+
- **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder)
|
| 41 |
+
- **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
### 3. How to Use
|
| 45 |
+
Here give some examples of how to use our model.
|
| 46 |
+
#### Chat Model Inference
|
| 47 |
+
```python
|
| 48 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
|
| 50 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
| 51 |
+
messages=[
|
| 52 |
+
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
| 53 |
+
]
|
| 54 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 55 |
+
# tokenizer.eos_token_id is the id of <|EOT|> token
|
| 56 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
| 57 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### 4. License
|
| 61 |
+
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
|
| 62 |
+
|
| 63 |
+
See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details.
|
| 64 |
+
|
| 65 |
+
### 5. Contact
|
| 66 |
+
|
| 67 |
+
If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).
|