File size: 8,144 Bytes
9cebdf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ea107
9cebdf7
a5ea107
 
9cebdf7
a5ea107
9cebdf7
 
 
 
 
 
a5ea107
9cebdf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- AWQ
- vLLM
base_model:
  - Qwen/Qwen3-VL-30B-A3B-Instruct
base_model_relation: quantized
---
# Qwen3-VL-30B-A3B-Instruct-AWQ
Base Model: [Qwen/Qwen3-VL-30B-A3B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen3-VL-30B-A3B-Instruct)

### 【Dependencies / Installation】
As of **2025-10-08**, create a fresh Python environment and run:
```bash
uv venv
source .venv/bin/activate

# Install vLLM >=0.11.0
uv pip install -U vllm

# Install Qwen-VL utility library (recommended for offline inference)
uv pip install qwen-vl-utils==0.0.14
```

For more details, refer to [vLLM Official Qwen3-VL Guide](https://docs.vllm.ai/projects/recipes/en/latest/Qwen/Qwen3-VL.html)

### 【vLLM Startup Command】

```
CONTEXT_LENGTH=32768

vllm serve \
    tclf90/Qwen3-VL-30B-A3B-Instruct-AWQ \
    --served-model-name My_Model \
    --swap-space 4 \
    --max-num-seqs 8 \
    --max-model-len $CONTEXT_LENGTH \
    --gpu-memory-utilization 0.9 \
    --tensor-parallel-size 2 \
    --trust-remote-code \
    --disable-log-requests \
    --host 0.0.0.0 \
    --port 8000
```

### 【Logs】
```
2025-10-04
1. Initial commit
```

### 【Model Files】
| File Size | Last Updated |
|-----------|--------------|
| `17GB`    | `2025-10-04` |

### 【Model Download】
```python
from modelscope import snapshot_download
snapshot_download('tclf90/Qwen3-VL-30B-A3B-Instruct-AWQ', cache_dir="your_local_path")
```

### 【Overview】
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>


# Qwen3-VL-30B-A3B-Instruct


Meet Qwen3-VL — the most powerful vision-language model in the Qwen series to date.

This generation delivers comprehensive upgrades across the board: superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities.

Available in Dense and MoE architectures that scale from edge to cloud, with Instruct and reasoning‑enhanced Thinking editions for flexible, on‑demand deployment.


#### Key Enhancements:

* **Visual Agent**: Operates PC/mobile GUIs—recognizes elements, understands functions, invokes tools, completes tasks.

* **Visual Coding Boost**: Generates Draw.io/HTML/CSS/JS from images/videos.

* **Advanced Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides stronger 2D grounding and enables 3D grounding for spatial reasoning and embodied AI.

* **Long Context & Video Understanding**: Native 256K context, expandable to 1M; handles books and hours-long video with full recall and second-level indexing.

* **Enhanced Multimodal Reasoning**: Excels in STEM/Math—causal analysis and logical, evidence-based answers.

* **Upgraded Visual Recognition**: Broader, higher-quality pretraining is able to “recognize everything”—celebrities, anime, products, landmarks, flora/fauna, etc.

* **Expanded OCR**: Supports 32 languages (up from 19); robust in low light, blur, and tilt; better with rare/ancient characters and jargon; improved long-document structure parsing.

* **Text Understanding on par with pure LLMs**: Seamless text–vision fusion for lossless, unified comprehension.


#### Model Architecture Updates:

<p align="center">
    <img src="https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/qwen3vl_arc.jpg" width="80%"/>
<p>


1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning.

2. **DeepStack**: Fuses multi‑level ViT features to capture fine‑grained details and sharpen image–text alignment.

3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling.

This is the weight repository for Qwen3-VL-30B-A3B-Instruct.


---

## Model Performance

**Multimodal performance**

![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_vl-30a3.jpg)

**Pure text performance**
![](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/table_nothinking_text-30a3.jpg)

## Quickstart

Below, we provide simple examples to show how to use Qwen3-VL with 🤖 ModelScope and 🤗 Transformers.

The code of Qwen3-VL has been in the latest Hugging Face transformers and we advise you to build from source with command:
```
pip install git+https://github.com/huggingface/transformers
# pip install transformers==4.57.0 # currently, V4.57.0 is not released
```

### Using 🤗 Transformers to Chat

Here we show a code snippet to show how to use the chat model with `transformers`:

```python
from transformers import Qwen3VLMoeForConditionalGeneration, AutoProcessor

# default: Load the model on the available device(s)
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
    "Qwen/Qwen3-VL-30B-A3B-Instruct", dtype="auto", device_map="auto"
)

# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
#     "Qwen/Qwen3-VL-30B-A3B-Instruct",
#     dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )

processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-30B-A3B-Instruct")

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    return_tensors="pt"
)

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```



## Citation

If you find our work helpful, feel free to give us a cite.

```
@misc{qwen3technicalreport,
      title={Qwen3 Technical Report}, 
      author={Qwen Team},
      year={2025},
      eprint={2505.09388},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.09388}, 
}

@article{Qwen2.5-VL,
  title={Qwen2.5-VL Technical Report},
  author={Bai, Shuai and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Song, Sibo and Dang, Kai and Wang, Peng and Wang, Shijie and Tang, Jun and Zhong, Humen and Zhu, Yuanzhi and Yang, Mingkun and Li, Zhaohai and Wan, Jianqiang and Wang, Pengfei and Ding, Wei and Fu, Zheren and Xu, Yiheng and Ye, Jiabo and Zhang, Xi and Xie, Tianbao and Cheng, Zesen and Zhang, Hang and Yang, Zhibo and Xu, Haiyang and Lin, Junyang},
  journal={arXiv preprint arXiv:2502.13923},
  year={2025}
}

@article{Qwen2VL,
  title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
  author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
  journal={arXiv preprint arXiv:2409.12191},
  year={2024}
}

@article{Qwen-VL,
  title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
  author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
  journal={arXiv preprint arXiv:2308.12966},
  year={2023}
}
```