File size: 7,863 Bytes
fd5bb20 bdd2d12 298b333 4882776 bdd2d12 708acde bdd2d12 708acde bdd2d12 708acde bdd2d12 fd5bb20 bdd2d12 fd5bb20 bdd2d12 fd5bb20 bdd2d12 fd5bb20 bdd2d12 fd5bb20 bdd2d12 fd5bb20 bdd2d12 298b333 bdd2d12 c1e1cdc bdd2d12 4882776 bdd2d12 4882776 bdd2d12 298b333 3223dd8 298b333 33db5cc 708acde 298b333 b50158e 298b333 708acde 298b333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- generated_from_trainer
datasets:
- trl-lib/tldr
---
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# Llama-3.1-8B-tldr
## Model Overview
- **Model Architecture:** LlamaForCausalLM
- **Input:** Text
- **Output:** Text
- **Release Date:** 05/29/2025
- **Version:** 1.0
- **Intended Use Cases:** This model is finetuned to summarize text in the style of Reddit posts.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License.
- **Model Developers:** Red Hat (Neural Magic)
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the [trl-lib/tldr](https://huggingface.co/datasets/trl-lib/tldr) dataset.
This model obtains 0.366 BERTScore on the test set of trl-lib/tldr.
## Deployment
This model can be deployed efficiently using [vLLM](https://docs.vllm.ai/en/latest/), as shown in the example below.
Run the following command to start the vLLM server:
```bash
vllm serve RedHatAI/Llama-3.1-8B-tldr
```
Once your server is started, you can query the model using the OpenAI API:
```python
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
post="""
SUBREDDIT: r/AI
TITLE: Training sparse LLMs
POST: Now you can use the llm-compressor integration to axolotl to train sparse LLMs!
It's super easy to use. See the example in https://huggingface.co/RedHatAI/Sparse-Llama-3.1-8B-tldr-2of4.
And there's more. You can run 2:4 sparse models on vLLM and get significant speedupts on Hopper GPUs!
"""
prompt = f"Give a TL;DR of the following Reddit post.\n<|user|>{post}\nTL;DR:\n<|assistant|>\n"
completion = client.completions.create(
model="RedHatAI/Llama-3.1-8B-tldr",
prompt=prompt,
max_tokens=256,
)
print("Completion result:", completion)
```
## Training
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
base_model: meta-llama/Llama-3.1-8B
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: trl-lib/tldr
type:
system_prompt: "Give a TL;DR of the following Reddit post."
field_system: system
field_instruction: prompt
field_output: completion
format: "<|user|>\n{instruction}\n<|assistant|>\n"
no_input_format: "<|user|>\n{instruction}\n<|assistant|>\n"
split: train
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: true
torch.compile: true
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
max_grad_norm: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
train_on_inputs: false
bf16: auto
fp16:
tf32: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
val_set_size: 0.05
save_strategy: "best"
save_total_limit: 1
metric_for_best_model: "loss"
debug:
deepspeed:
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
seed: 0
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
```
</details><br>
## Training
<details><summary>Training hyperparameters</summary>
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 49
- num_epochs: 3.0
</details><br>
<details><summary>Training results</summary>
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2572 | 0.0031 | 1 | 2.2288 |
| 1.7865 | 0.2508 | 82 | 1.7680 |
| 1.7257 | 0.5015 | 164 | 1.7567 |
| 1.7343 | 0.7523 | 246 | 1.7489 |
| 1.7688 | 1.0031 | 328 | 1.7441 |
| 1.6822 | 1.2538 | 410 | 1.7493 |
| 1.6085 | 1.5046 | 492 | 1.7480 |
| 1.6627 | 1.7554 | 574 | 1.7444 |
| 1.729 | 2.0061 | 656 | 1.7426 |
| 1.6149 | 2.2569 | 738 | 1.7540 |
| 1.6002 | 2.5076 | 820 | 1.7537 |
| 1.6573 | 2.7584 | 902 | 1.7526 |
</details><br>
<details><summary>Framework versions</summary>
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
</details><br>
## Evaluation
The model was evaluated on the test split of [trl-lib/tldr](https://huggingface.co/datasets/trl-lib/tldr) using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/tldr) (tldr branch).
One can reproduce these results by using the following command:
```bash
lm_eval --model vllm --model_args "pretrained=RedHatAI/Llama-3.1-8B-tldr,dtype=auto,add_bos_token=True" --batch-size auto --tasks tldr
```
<table>
<tr>
<th>Metric
</th>
<th>Llama-3.1-8B-Instruct
</th>
<th>Llama-3.1-8B-tldr
</th>
<th>Sparse-Llama-3.1-8B-tldr-2of4<br>(this model)
</th>
</tr>
<tr>
<td>BERTScore
</td>
<td>-0.230
</td>
<td>0.366
</td>
<td>0.366
</td>
</tr>
<tr>
<td>ROUGE-1
</td>
<td>0.059
</td>
<td>0.362
</td>
<td>0.357
</td>
</tr>
<tr>
<td>ROUGE-2
</td>
<td>0.018
</td>
<td>0.144
</td>
<td>0.141
</td>
</tr>
<tr>
<td>ROUGE-Lsum
</td>
<td>0.051
</td>
<td>0.306
</td>
<td>0.304
</td>
</tr>
</table>
## Inference Performance
We evaluated the inference performance of this model using the first 1,000 samples from the training set of the [trl-lib/tldr](https://huggingface.co/datasets/trl-lib/tldr) dataset.
Benchmarking was conducted with [vLLM](https://docs.vllm.ai/en/latest/) version `0.9.0.1` and [GuideLLM](https://github.com/neuralmagic/guidellm) version `0.2.1`.
The figure below presents the **mean end-to-end latency per request** across varying request rates.
Results are shown for this model, as well as two variants:
- **Dense-quantized:** [Llama-3.1-8B-tldr-FP8-dynamic](https://huggingface.co/RedHatAI/Llama-3.1-8B-tldr-FP8-dynamic)
- **Sparse-quantized:** [Sparse-Llama-3.1-8B-tldr-2of4-FP8-dynamic](https://huggingface.co/RedHatAI/Sparse-Llama-3.1-8B-tldr-2of4-FP8-dynamic)

<details><summary><strong>Reproduction instructions</strong></summary>
To replicate the benchmark:
1. Generate a JSON file containing the first 1,000 training samples:
```python
from datasets import load_dataset
ds = load_dataset("trl-lib/tldr", split="train").take(1000)
ds.to_json("tldr_1000.json")
```
2. Start a vLLM server using your target model:
```bash
vllm serve RedHatAI/Llama-3.1-8B-tldr
```
3. Run the benchmark with GuideLLM:
```
GUIDELLM__OPENAI__MAX_OUTPUT_TOKENS=128 guidellm benchmark --target "http://localhost:8000" --rate-type sweep --data tldr_1000.json
```
> The average output length is approximately 30 tokens per sample. We capped the generation at 128 tokens to reduce performance skew from rare, unusually verbose completions.
</details>
|