--- license: apache-2.0 pipeline_tag: text-generation tags: - fp8 - quantized - llm-compressor - compressed-tensors - red hat base_model: - meta-llama/Llama-3.3-70B-Instruct --- # Llama-3.3-70B-Instruct-FP8-block ## Model Overview - **Model Architecture:** LlamaForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** - **Version:** 1.0 - **Model Developers:**: Red Hat Quantized version of [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). ### Model Optimizations This model was obtained by quantizing the weights and activations of [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized. ## Deployment ### Use with vLLM 1. Initialize vLLM server: ``` vllm serve nm-testing/Llama-3.3-70B-Instruct-FP8-block --tensor_parallel_size 4 ``` 2. Send requests to the server: ```python from openai import OpenAI # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model = "nm-testing/Llama-3.3-70B-Instruct-FP8-block" messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = client.chat.completions.create( model=model, messages=messages, ) generated_text = outputs.choices[0].message.content print(generated_text) ``` ## Creation This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
Creation details ```python from transformers import AutoProcessor, LlamaForCausalLM from llmcompressor import oneshot from llmcompressor.modeling import replace_modules_for_calibration from llmcompressor.modifiers.quantization import QuantizationModifier MODEL_ID = "meta-llama/Llama-3.3-70B-Instruct" # Load model. model = LlamaForCausalLM.from_pretrained(MODEL_ID, dtype="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) model = replace_modules_for_calibration(model) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per-block quantization # * quantize the activations to fp8 with dynamic token activations recipe = QuantizationModifier( targets="Linear", scheme="FP8_BLOCK", ignore=["lm_head"], ) # Apply quantization. oneshot(model=model, recipe=recipe) # Save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block" model.save_pretrained(SAVE_DIR) processor.save_pretrained(SAVE_DIR) ```
## Evaluation The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval). [vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
Evaluation details **Openllm V1** ``` lm_eval \ --model vllm \ --model_args pretrained="nm-testing/Llama-3.3-70B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --show_config ``` **Openllm V2** ``` lm_eval \ --model vllm \ --model_args pretrained="nm-testing/Llama-3.3-70B-Instruct-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \ --tasks leaderboard \ --apply_chat_template \ --fewshot_as_multiturn \ --write_out \ --batch_size auto \ --show_config ``` **Coding Benchmarks** ``` evalplus.evaluate --model "nm-testing/Llama-3.3-70B-Instruct-FP8-block" \ --dataset "humaneval" \ --backend vllm \ --tp 4 \ --greedy evalplus.evaluate --model "nm-testing/Llama-3.3-70B-Instruct-FP8-block" \ --dataset "mbpp" \ --backend vllm \ --tp 4 \ --greedy ```
### Accuracy
Category Metric meta-llama/Llama-3.3-70B-Instruct nm-testing/Llama-3.3-70B-Instruct-FP8-block Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 72.53 72.61 100.12
GSM8K (Strict-Match, 5-shot) 76.35 73.16 95.83
HellaSwag (Acc-Norm, 10-shot) 86.65 86.56 99.90
MMLU (Acc, 5-shot) 82.51 82.38 99.84
TruthfulQA (MC2, 0-shot) 62.83 62.64 99.69
Winogrande (Acc, 5-shot) 83.50 83.27 99.72
Average Score 77.39 76.77 99.20
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 92.57 92.57 100.00
BBH (Acc-Norm, 3-shot) 69.03 68.98 99.92
Math-Hard (Exact-Match, 4-shot) 49.24 49.47 100.46
GPQA (Acc-Norm, 0-shot) 32.63 32.63 100.00
MUSR (Acc-Norm, 0-shot) 44.31 43.92 99.10
MMLU-Pro (Acc, 5-shot) 53.55 53.56 100.02
Average Score 56.89 56.85 99.93
Coding HumanEval pass@1 82.90 82.90 100.00
HumanEval+ pass@1 78.70 77.40 98.35
MBPP pass@1 87.70 87.60 99.89
MBPP+ pass@1 72.80 73.00 100.27