|
import torch
|
|
import torch.nn as nn
|
|
import pickle
|
|
from transformers import AutoTokenizer, AutoModel
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
|
|
OFFLINE_MODEL_PATH = "all-MiniLM-L6-v2"
|
|
|
|
|
|
|
|
|
|
|
|
class ImprovedMultiTaskClassifier(nn.Module):
|
|
def __init__(self, model_name, num_keywords, num_groups, dropout_rate=0.1):
|
|
super(ImprovedMultiTaskClassifier, self).__init__()
|
|
self.transformer = AutoModel.from_pretrained(model_name)
|
|
hidden_size = self.transformer.config.hidden_size
|
|
|
|
self.keyword_classifier = nn.Sequential(
|
|
nn.Linear(hidden_size, hidden_size),
|
|
nn.LayerNorm(hidden_size), nn.ReLU(), nn.Dropout(dropout_rate),
|
|
nn.Linear(hidden_size, hidden_size // 2),
|
|
nn.LayerNorm(hidden_size // 2), nn.ReLU(), nn.Dropout(dropout_rate),
|
|
nn.Linear(hidden_size // 2, num_keywords)
|
|
)
|
|
self.group_classifier = nn.Sequential(
|
|
nn.Linear(hidden_size, hidden_size),
|
|
nn.LayerNorm(hidden_size), nn.ReLU(), nn.Dropout(dropout_rate),
|
|
nn.Linear(hidden_size, hidden_size // 2),
|
|
nn.LayerNorm(hidden_size // 2), nn.ReLU(), nn.Dropout(dropout_rate),
|
|
nn.Linear(hidden_size // 2, num_groups)
|
|
)
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
|
|
token_embeddings = outputs.last_hidden_state
|
|
attention_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
sum_embeddings = torch.sum(token_embeddings * attention_mask_expanded, 1)
|
|
sum_mask = torch.clamp(attention_mask_expanded.sum(1), min=1e-9)
|
|
pooled_output = sum_embeddings / sum_mask
|
|
keyword_logits = self.keyword_classifier(pooled_output)
|
|
group_logits = self.group_classifier(pooled_output)
|
|
return keyword_logits, group_logits
|
|
|
|
|
|
|
|
|
|
|
|
print("Loading all components for inference...")
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
print(f"Using device: {device}")
|
|
|
|
|
|
with open('minilm_keyword_classifier_gemini/inference_config.pkl', 'rb') as f:
|
|
config = pickle.load(f)
|
|
|
|
|
|
config['model_name'] = OFFLINE_MODEL_PATH
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(OFFLINE_MODEL_PATH)
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('minilm_keyword_classifier_gemini/inference_tokenizer')
|
|
|
|
|
|
with open('minilm_keyword_classifier_gemini/inference_mlb_keywords.pkl', 'rb') as f:
|
|
mlb_keywords = pickle.load(f)
|
|
with open('minilm_keyword_classifier_gemini/inference_mlb_groups.pkl', 'rb') as f:
|
|
mlb_groups = pickle.load(f)
|
|
|
|
|
|
num_keywords = len(mlb_keywords.classes_)
|
|
num_groups = len(mlb_groups.classes_)
|
|
model = ImprovedMultiTaskClassifier(config['model_name'], num_keywords, num_groups).to(device)
|
|
|
|
|
|
model.load_state_dict(torch.load('minilm_keyword_classifier_gemini/inference_model.pth', map_location=device))
|
|
|
|
|
|
model.eval()
|
|
|
|
print("✅ All components loaded and model is ready for inference.")
|
|
|
|
|
|
|
|
|
|
|
|
def predict_on_text(text: str):
|
|
"""
|
|
Takes a string of text and returns the predicted keywords and groups
|
|
along with their confidence scores.
|
|
"""
|
|
with torch.no_grad():
|
|
encoding = tokenizer(
|
|
text,
|
|
truncation=True,
|
|
padding='max_length',
|
|
max_length=512,
|
|
return_tensors='pt'
|
|
)
|
|
input_ids = encoding['input_ids'].to(device)
|
|
attention_mask = encoding['attention_mask'].to(device)
|
|
|
|
keyword_logits, group_logits = model(input_ids, attention_mask)
|
|
|
|
keyword_probs = torch.sigmoid(keyword_logits).cpu().numpy()[0]
|
|
group_probs = torch.sigmoid(group_logits).cpu().numpy()[0]
|
|
|
|
kw_threshold = config['optimal_keyword_threshold']
|
|
gr_threshold = config['optimal_group_threshold']
|
|
|
|
|
|
|
|
kw_indices = np.where(keyword_probs > kw_threshold)[0]
|
|
predicted_keywords_with_scores = [
|
|
(mlb_keywords.classes_[i], keyword_probs[i]) for i in kw_indices
|
|
]
|
|
|
|
|
|
gr_indices = np.where(group_probs > gr_threshold)[0]
|
|
predicted_groups_with_scores = [
|
|
(mlb_groups.classes_[i], group_probs[i]) for i in gr_indices
|
|
]
|
|
|
|
|
|
predicted_keywords_with_scores.sort(key=lambda x: x[1], reverse=True)
|
|
predicted_groups_with_scores.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
|
|
return {
|
|
'predicted_keywords_with_scores': predicted_keywords_with_scores,
|
|
'predicted_groups_with_scores': predicted_groups_with_scores,
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text = """I want you to understand, people think there are many problems in the world. There are no many problems in the world. There's only one problem in the world – human being. What other problem, I'm asking"""
|
|
|
|
dpred = predict_on_text(text)
|
|
for d in dpred['predicted_groups_with_scores']:
|
|
print(d[0], d[1], d[1] > 0.5) |