Upload 22 files
Browse filesMIrrored Repo Model files for Kokoro 82M
- .cloned +0 -0
- .gitattributes +3 -0
- config.json +26 -0
- fp16/halve.py +17 -0
- fp16/kokoro-v0_19-half.pth +3 -0
- istftnet.py +523 -0
- kokoro-v0_19.onnx +3 -0
- kokoro-v0_19.pth +3 -0
- kokoro.py +149 -0
- models.py +372 -0
- plbert.py +15 -0
- voices/af.pt +3 -0
- voices/af_bella.pt +3 -0
- voices/af_nicole.pt +3 -0
- voices/af_sarah.pt +3 -0
- voices/af_sky.pt +3 -0
- voices/am_adam.pt +3 -0
- voices/am_michael.pt +3 -0
- voices/bf_emma.pt +3 -0
- voices/bf_isabella.pt +3 -0
- voices/bm_george.pt +3 -0
- voices/bm_lewis.pt +3 -0
.cloned
ADDED
|
File without changes
|
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
TTS-Spaces-Arena-25-Dec-2024.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
HEARME.wav filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
demo/af_sky.wav filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"decoder": {
|
| 3 |
+
"type": "istftnet",
|
| 4 |
+
"upsample_kernel_sizes": [20, 12],
|
| 5 |
+
"upsample_rates": [10, 6],
|
| 6 |
+
"gen_istft_hop_size": 5,
|
| 7 |
+
"gen_istft_n_fft": 20,
|
| 8 |
+
"resblock_dilation_sizes": [
|
| 9 |
+
[1, 3, 5],
|
| 10 |
+
[1, 3, 5],
|
| 11 |
+
[1, 3, 5]
|
| 12 |
+
],
|
| 13 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 14 |
+
"upsample_initial_channel": 512
|
| 15 |
+
},
|
| 16 |
+
"dim_in": 64,
|
| 17 |
+
"dropout": 0.2,
|
| 18 |
+
"hidden_dim": 512,
|
| 19 |
+
"max_conv_dim": 512,
|
| 20 |
+
"max_dur": 50,
|
| 21 |
+
"multispeaker": true,
|
| 22 |
+
"n_layer": 3,
|
| 23 |
+
"n_mels": 80,
|
| 24 |
+
"n_token": 178,
|
| 25 |
+
"style_dim": 128
|
| 26 |
+
}
|
fp16/halve.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from hashlib import sha256
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
path = Path(__file__).parent.parent / 'kokoro-v0_19.pth'
|
| 6 |
+
assert path.exists(), f'No model pth found at {path}'
|
| 7 |
+
|
| 8 |
+
net = torch.load(path, map_location='cpu', weights_only=True)['net']
|
| 9 |
+
for a in net:
|
| 10 |
+
for b in net[a]:
|
| 11 |
+
net[a][b] = net[a][b].half()
|
| 12 |
+
|
| 13 |
+
torch.save(dict(net=net), 'kokoro-v0_19-half.pth')
|
| 14 |
+
with open('kokoro-v0_19-half.pth', 'rb') as rb:
|
| 15 |
+
h = sha256(rb.read()).hexdigest()
|
| 16 |
+
|
| 17 |
+
assert h == '70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c', h
|
fp16/kokoro-v0_19-half.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c
|
| 3 |
+
size 163731194
|
istftnet.py
ADDED
|
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
| 2 |
+
from scipy.signal import get_window
|
| 3 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
| 4 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
| 11 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 12 |
+
classname = m.__class__.__name__
|
| 13 |
+
if classname.find("Conv") != -1:
|
| 14 |
+
m.weight.data.normal_(mean, std)
|
| 15 |
+
|
| 16 |
+
def get_padding(kernel_size, dilation=1):
|
| 17 |
+
return int((kernel_size*dilation - dilation)/2)
|
| 18 |
+
|
| 19 |
+
LRELU_SLOPE = 0.1
|
| 20 |
+
|
| 21 |
+
class AdaIN1d(nn.Module):
|
| 22 |
+
def __init__(self, style_dim, num_features):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
| 25 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 26 |
+
|
| 27 |
+
def forward(self, x, s):
|
| 28 |
+
h = self.fc(s)
|
| 29 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 30 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 31 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 32 |
+
|
| 33 |
+
class AdaINResBlock1(torch.nn.Module):
|
| 34 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
| 35 |
+
super(AdaINResBlock1, self).__init__()
|
| 36 |
+
self.convs1 = nn.ModuleList([
|
| 37 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 38 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 40 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 42 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 43 |
+
])
|
| 44 |
+
self.convs1.apply(init_weights)
|
| 45 |
+
|
| 46 |
+
self.convs2 = nn.ModuleList([
|
| 47 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 48 |
+
padding=get_padding(kernel_size, 1))),
|
| 49 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 50 |
+
padding=get_padding(kernel_size, 1))),
|
| 51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 52 |
+
padding=get_padding(kernel_size, 1)))
|
| 53 |
+
])
|
| 54 |
+
self.convs2.apply(init_weights)
|
| 55 |
+
|
| 56 |
+
self.adain1 = nn.ModuleList([
|
| 57 |
+
AdaIN1d(style_dim, channels),
|
| 58 |
+
AdaIN1d(style_dim, channels),
|
| 59 |
+
AdaIN1d(style_dim, channels),
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
self.adain2 = nn.ModuleList([
|
| 63 |
+
AdaIN1d(style_dim, channels),
|
| 64 |
+
AdaIN1d(style_dim, channels),
|
| 65 |
+
AdaIN1d(style_dim, channels),
|
| 66 |
+
])
|
| 67 |
+
|
| 68 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
| 69 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def forward(self, x, s):
|
| 73 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
| 74 |
+
xt = n1(x, s)
|
| 75 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
| 76 |
+
xt = c1(xt)
|
| 77 |
+
xt = n2(xt, s)
|
| 78 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
| 79 |
+
xt = c2(xt)
|
| 80 |
+
x = xt + x
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
def remove_weight_norm(self):
|
| 84 |
+
for l in self.convs1:
|
| 85 |
+
remove_weight_norm(l)
|
| 86 |
+
for l in self.convs2:
|
| 87 |
+
remove_weight_norm(l)
|
| 88 |
+
|
| 89 |
+
class TorchSTFT(torch.nn.Module):
|
| 90 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.filter_length = filter_length
|
| 93 |
+
self.hop_length = hop_length
|
| 94 |
+
self.win_length = win_length
|
| 95 |
+
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
| 96 |
+
|
| 97 |
+
def transform(self, input_data):
|
| 98 |
+
forward_transform = torch.stft(
|
| 99 |
+
input_data,
|
| 100 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
| 101 |
+
return_complex=True)
|
| 102 |
+
|
| 103 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
| 104 |
+
|
| 105 |
+
def inverse(self, magnitude, phase):
|
| 106 |
+
inverse_transform = torch.istft(
|
| 107 |
+
magnitude * torch.exp(phase * 1j),
|
| 108 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
| 109 |
+
|
| 110 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
| 111 |
+
|
| 112 |
+
def forward(self, input_data):
|
| 113 |
+
self.magnitude, self.phase = self.transform(input_data)
|
| 114 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
| 115 |
+
return reconstruction
|
| 116 |
+
|
| 117 |
+
class SineGen(torch.nn.Module):
|
| 118 |
+
""" Definition of sine generator
|
| 119 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 120 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 121 |
+
voiced_threshold = 0,
|
| 122 |
+
flag_for_pulse=False)
|
| 123 |
+
samp_rate: sampling rate in Hz
|
| 124 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 125 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 126 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 127 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 128 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 129 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 130 |
+
segment is always sin(np.pi) or cos(0)
|
| 131 |
+
"""
|
| 132 |
+
|
| 133 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
| 134 |
+
sine_amp=0.1, noise_std=0.003,
|
| 135 |
+
voiced_threshold=0,
|
| 136 |
+
flag_for_pulse=False):
|
| 137 |
+
super(SineGen, self).__init__()
|
| 138 |
+
self.sine_amp = sine_amp
|
| 139 |
+
self.noise_std = noise_std
|
| 140 |
+
self.harmonic_num = harmonic_num
|
| 141 |
+
self.dim = self.harmonic_num + 1
|
| 142 |
+
self.sampling_rate = samp_rate
|
| 143 |
+
self.voiced_threshold = voiced_threshold
|
| 144 |
+
self.flag_for_pulse = flag_for_pulse
|
| 145 |
+
self.upsample_scale = upsample_scale
|
| 146 |
+
|
| 147 |
+
def _f02uv(self, f0):
|
| 148 |
+
# generate uv signal
|
| 149 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 150 |
+
return uv
|
| 151 |
+
|
| 152 |
+
def _f02sine(self, f0_values):
|
| 153 |
+
""" f0_values: (batchsize, length, dim)
|
| 154 |
+
where dim indicates fundamental tone and overtones
|
| 155 |
+
"""
|
| 156 |
+
# convert to F0 in rad. The interger part n can be ignored
|
| 157 |
+
# because 2 * np.pi * n doesn't affect phase
|
| 158 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
| 159 |
+
|
| 160 |
+
# initial phase noise (no noise for fundamental component)
|
| 161 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
| 162 |
+
device=f0_values.device)
|
| 163 |
+
rand_ini[:, 0] = 0
|
| 164 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 165 |
+
|
| 166 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
| 167 |
+
if not self.flag_for_pulse:
|
| 168 |
+
# # for normal case
|
| 169 |
+
|
| 170 |
+
# # To prevent torch.cumsum numerical overflow,
|
| 171 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
| 172 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
| 173 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
| 174 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 175 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 176 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 177 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 178 |
+
|
| 179 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 180 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 181 |
+
scale_factor=1/self.upsample_scale,
|
| 182 |
+
mode="linear").transpose(1, 2)
|
| 183 |
+
|
| 184 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 185 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 186 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 187 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 188 |
+
|
| 189 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 190 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 191 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
| 192 |
+
sines = torch.sin(phase)
|
| 193 |
+
|
| 194 |
+
else:
|
| 195 |
+
# If necessary, make sure that the first time step of every
|
| 196 |
+
# voiced segments is sin(pi) or cos(0)
|
| 197 |
+
# This is used for pulse-train generation
|
| 198 |
+
|
| 199 |
+
# identify the last time step in unvoiced segments
|
| 200 |
+
uv = self._f02uv(f0_values)
|
| 201 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
| 202 |
+
uv_1[:, -1, :] = 1
|
| 203 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
| 204 |
+
|
| 205 |
+
# get the instantanouse phase
|
| 206 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
| 207 |
+
# different batch needs to be processed differently
|
| 208 |
+
for idx in range(f0_values.shape[0]):
|
| 209 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
| 210 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
| 211 |
+
# stores the accumulation of i.phase within
|
| 212 |
+
# each voiced segments
|
| 213 |
+
tmp_cumsum[idx, :, :] = 0
|
| 214 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
| 215 |
+
|
| 216 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
| 217 |
+
# within the previous voiced segment.
|
| 218 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
| 219 |
+
|
| 220 |
+
# get the sines
|
| 221 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
| 222 |
+
return sines
|
| 223 |
+
|
| 224 |
+
def forward(self, f0):
|
| 225 |
+
""" sine_tensor, uv = forward(f0)
|
| 226 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 227 |
+
f0 for unvoiced steps should be 0
|
| 228 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 229 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 230 |
+
"""
|
| 231 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
| 232 |
+
device=f0.device)
|
| 233 |
+
# fundamental component
|
| 234 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
| 235 |
+
|
| 236 |
+
# generate sine waveforms
|
| 237 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
| 238 |
+
|
| 239 |
+
# generate uv signal
|
| 240 |
+
# uv = torch.ones(f0.shape)
|
| 241 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
| 242 |
+
uv = self._f02uv(f0)
|
| 243 |
+
|
| 244 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 245 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 246 |
+
# . for voiced regions is self.noise_std
|
| 247 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 248 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 249 |
+
|
| 250 |
+
# first: set the unvoiced part to 0 by uv
|
| 251 |
+
# then: additive noise
|
| 252 |
+
sine_waves = sine_waves * uv + noise
|
| 253 |
+
return sine_waves, uv, noise
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 257 |
+
""" SourceModule for hn-nsf
|
| 258 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 259 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 260 |
+
sampling_rate: sampling_rate in Hz
|
| 261 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 262 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 263 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 264 |
+
note that amplitude of noise in unvoiced is decided
|
| 265 |
+
by sine_amp
|
| 266 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 267 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 268 |
+
F0_sampled (batchsize, length, 1)
|
| 269 |
+
Sine_source (batchsize, length, 1)
|
| 270 |
+
noise_source (batchsize, length 1)
|
| 271 |
+
uv (batchsize, length, 1)
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 275 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 276 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 277 |
+
|
| 278 |
+
self.sine_amp = sine_amp
|
| 279 |
+
self.noise_std = add_noise_std
|
| 280 |
+
|
| 281 |
+
# to produce sine waveforms
|
| 282 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
| 283 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 284 |
+
|
| 285 |
+
# to merge source harmonics into a single excitation
|
| 286 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 287 |
+
self.l_tanh = torch.nn.Tanh()
|
| 288 |
+
|
| 289 |
+
def forward(self, x):
|
| 290 |
+
"""
|
| 291 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 292 |
+
F0_sampled (batchsize, length, 1)
|
| 293 |
+
Sine_source (batchsize, length, 1)
|
| 294 |
+
noise_source (batchsize, length 1)
|
| 295 |
+
"""
|
| 296 |
+
# source for harmonic branch
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
| 299 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 300 |
+
|
| 301 |
+
# source for noise branch, in the same shape as uv
|
| 302 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 303 |
+
return sine_merge, noise, uv
|
| 304 |
+
def padDiff(x):
|
| 305 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class Generator(torch.nn.Module):
|
| 309 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
| 310 |
+
super(Generator, self).__init__()
|
| 311 |
+
|
| 312 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 313 |
+
self.num_upsamples = len(upsample_rates)
|
| 314 |
+
resblock = AdaINResBlock1
|
| 315 |
+
|
| 316 |
+
self.m_source = SourceModuleHnNSF(
|
| 317 |
+
sampling_rate=24000,
|
| 318 |
+
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
| 319 |
+
harmonic_num=8, voiced_threshod=10)
|
| 320 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
| 321 |
+
self.noise_convs = nn.ModuleList()
|
| 322 |
+
self.noise_res = nn.ModuleList()
|
| 323 |
+
|
| 324 |
+
self.ups = nn.ModuleList()
|
| 325 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 326 |
+
self.ups.append(weight_norm(
|
| 327 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
| 328 |
+
k, u, padding=(k-u)//2)))
|
| 329 |
+
|
| 330 |
+
self.resblocks = nn.ModuleList()
|
| 331 |
+
for i in range(len(self.ups)):
|
| 332 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 333 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
| 334 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
| 335 |
+
|
| 336 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 337 |
+
|
| 338 |
+
if i + 1 < len(upsample_rates): #
|
| 339 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
| 340 |
+
self.noise_convs.append(Conv1d(
|
| 341 |
+
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
| 342 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
| 343 |
+
else:
|
| 344 |
+
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
| 345 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
self.post_n_fft = gen_istft_n_fft
|
| 349 |
+
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
| 350 |
+
self.ups.apply(init_weights)
|
| 351 |
+
self.conv_post.apply(init_weights)
|
| 352 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
| 353 |
+
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
def forward(self, x, s, f0):
|
| 357 |
+
with torch.no_grad():
|
| 358 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 359 |
+
|
| 360 |
+
har_source, noi_source, uv = self.m_source(f0)
|
| 361 |
+
har_source = har_source.transpose(1, 2).squeeze(1)
|
| 362 |
+
har_spec, har_phase = self.stft.transform(har_source)
|
| 363 |
+
har = torch.cat([har_spec, har_phase], dim=1)
|
| 364 |
+
|
| 365 |
+
for i in range(self.num_upsamples):
|
| 366 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 367 |
+
x_source = self.noise_convs[i](har)
|
| 368 |
+
x_source = self.noise_res[i](x_source, s)
|
| 369 |
+
|
| 370 |
+
x = self.ups[i](x)
|
| 371 |
+
if i == self.num_upsamples - 1:
|
| 372 |
+
x = self.reflection_pad(x)
|
| 373 |
+
|
| 374 |
+
x = x + x_source
|
| 375 |
+
xs = None
|
| 376 |
+
for j in range(self.num_kernels):
|
| 377 |
+
if xs is None:
|
| 378 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
| 379 |
+
else:
|
| 380 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
| 381 |
+
x = xs / self.num_kernels
|
| 382 |
+
x = F.leaky_relu(x)
|
| 383 |
+
x = self.conv_post(x)
|
| 384 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
| 385 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
| 386 |
+
return self.stft.inverse(spec, phase)
|
| 387 |
+
|
| 388 |
+
def fw_phase(self, x, s):
|
| 389 |
+
for i in range(self.num_upsamples):
|
| 390 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 391 |
+
x = self.ups[i](x)
|
| 392 |
+
xs = None
|
| 393 |
+
for j in range(self.num_kernels):
|
| 394 |
+
if xs is None:
|
| 395 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
| 396 |
+
else:
|
| 397 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
| 398 |
+
x = xs / self.num_kernels
|
| 399 |
+
x = F.leaky_relu(x)
|
| 400 |
+
x = self.reflection_pad(x)
|
| 401 |
+
x = self.conv_post(x)
|
| 402 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
| 403 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
| 404 |
+
return spec, phase
|
| 405 |
+
|
| 406 |
+
def remove_weight_norm(self):
|
| 407 |
+
print('Removing weight norm...')
|
| 408 |
+
for l in self.ups:
|
| 409 |
+
remove_weight_norm(l)
|
| 410 |
+
for l in self.resblocks:
|
| 411 |
+
l.remove_weight_norm()
|
| 412 |
+
remove_weight_norm(self.conv_pre)
|
| 413 |
+
remove_weight_norm(self.conv_post)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class AdainResBlk1d(nn.Module):
|
| 417 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 418 |
+
upsample='none', dropout_p=0.0):
|
| 419 |
+
super().__init__()
|
| 420 |
+
self.actv = actv
|
| 421 |
+
self.upsample_type = upsample
|
| 422 |
+
self.upsample = UpSample1d(upsample)
|
| 423 |
+
self.learned_sc = dim_in != dim_out
|
| 424 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 425 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 426 |
+
|
| 427 |
+
if upsample == 'none':
|
| 428 |
+
self.pool = nn.Identity()
|
| 429 |
+
else:
|
| 430 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 434 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 435 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 436 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 437 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 438 |
+
if self.learned_sc:
|
| 439 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 440 |
+
|
| 441 |
+
def _shortcut(self, x):
|
| 442 |
+
x = self.upsample(x)
|
| 443 |
+
if self.learned_sc:
|
| 444 |
+
x = self.conv1x1(x)
|
| 445 |
+
return x
|
| 446 |
+
|
| 447 |
+
def _residual(self, x, s):
|
| 448 |
+
x = self.norm1(x, s)
|
| 449 |
+
x = self.actv(x)
|
| 450 |
+
x = self.pool(x)
|
| 451 |
+
x = self.conv1(self.dropout(x))
|
| 452 |
+
x = self.norm2(x, s)
|
| 453 |
+
x = self.actv(x)
|
| 454 |
+
x = self.conv2(self.dropout(x))
|
| 455 |
+
return x
|
| 456 |
+
|
| 457 |
+
def forward(self, x, s):
|
| 458 |
+
out = self._residual(x, s)
|
| 459 |
+
out = (out + self._shortcut(x)) / np.sqrt(2)
|
| 460 |
+
return out
|
| 461 |
+
|
| 462 |
+
class UpSample1d(nn.Module):
|
| 463 |
+
def __init__(self, layer_type):
|
| 464 |
+
super().__init__()
|
| 465 |
+
self.layer_type = layer_type
|
| 466 |
+
|
| 467 |
+
def forward(self, x):
|
| 468 |
+
if self.layer_type == 'none':
|
| 469 |
+
return x
|
| 470 |
+
else:
|
| 471 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 472 |
+
|
| 473 |
+
class Decoder(nn.Module):
|
| 474 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
| 475 |
+
resblock_kernel_sizes = [3,7,11],
|
| 476 |
+
upsample_rates = [10, 6],
|
| 477 |
+
upsample_initial_channel=512,
|
| 478 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
| 479 |
+
upsample_kernel_sizes=[20, 12],
|
| 480 |
+
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
| 481 |
+
super().__init__()
|
| 482 |
+
|
| 483 |
+
self.decode = nn.ModuleList()
|
| 484 |
+
|
| 485 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
| 486 |
+
|
| 487 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 488 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 489 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 490 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
| 491 |
+
|
| 492 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 493 |
+
|
| 494 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 495 |
+
|
| 496 |
+
self.asr_res = nn.Sequential(
|
| 497 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
| 502 |
+
upsample_initial_channel, resblock_dilation_sizes,
|
| 503 |
+
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
| 504 |
+
|
| 505 |
+
def forward(self, asr, F0_curve, N, s):
|
| 506 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
| 507 |
+
N = self.N_conv(N.unsqueeze(1))
|
| 508 |
+
|
| 509 |
+
x = torch.cat([asr, F0, N], axis=1)
|
| 510 |
+
x = self.encode(x, s)
|
| 511 |
+
|
| 512 |
+
asr_res = self.asr_res(asr)
|
| 513 |
+
|
| 514 |
+
res = True
|
| 515 |
+
for block in self.decode:
|
| 516 |
+
if res:
|
| 517 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
| 518 |
+
x = block(x, s)
|
| 519 |
+
if block.upsample_type != "none":
|
| 520 |
+
res = False
|
| 521 |
+
|
| 522 |
+
x = self.generator(x, s, F0_curve)
|
| 523 |
+
return x
|
kokoro-v0_19.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebef42457f7efee9b60b4f1d5aec7692f2925923948a0d7a2a49d2c9edf57e49
|
| 3 |
+
size 345554732
|
kokoro-v0_19.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a
|
| 3 |
+
size 327211206
|
kokoro.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import phonemizer
|
| 2 |
+
import re
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
def split_num(num):
|
| 6 |
+
num = num.group()
|
| 7 |
+
if '.' in num:
|
| 8 |
+
return num
|
| 9 |
+
elif ':' in num:
|
| 10 |
+
h, m = [int(n) for n in num.split(':')]
|
| 11 |
+
if m == 0:
|
| 12 |
+
return f"{h} o'clock"
|
| 13 |
+
elif m < 10:
|
| 14 |
+
return f'{h} oh {m}'
|
| 15 |
+
return f'{h} {m}'
|
| 16 |
+
year = int(num[:4])
|
| 17 |
+
if year < 1100 or year % 1000 < 10:
|
| 18 |
+
return num
|
| 19 |
+
left, right = num[:2], int(num[2:4])
|
| 20 |
+
s = 's' if num.endswith('s') else ''
|
| 21 |
+
if 100 <= year % 1000 <= 999:
|
| 22 |
+
if right == 0:
|
| 23 |
+
return f'{left} hundred{s}'
|
| 24 |
+
elif right < 10:
|
| 25 |
+
return f'{left} oh {right}{s}'
|
| 26 |
+
return f'{left} {right}{s}'
|
| 27 |
+
|
| 28 |
+
def flip_money(m):
|
| 29 |
+
m = m.group()
|
| 30 |
+
bill = 'dollar' if m[0] == '$' else 'pound'
|
| 31 |
+
if m[-1].isalpha():
|
| 32 |
+
return f'{m[1:]} {bill}s'
|
| 33 |
+
elif '.' not in m:
|
| 34 |
+
s = '' if m[1:] == '1' else 's'
|
| 35 |
+
return f'{m[1:]} {bill}{s}'
|
| 36 |
+
b, c = m[1:].split('.')
|
| 37 |
+
s = '' if b == '1' else 's'
|
| 38 |
+
c = int(c.ljust(2, '0'))
|
| 39 |
+
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
| 40 |
+
return f'{b} {bill}{s} and {c} {coins}'
|
| 41 |
+
|
| 42 |
+
def point_num(num):
|
| 43 |
+
a, b = num.group().split('.')
|
| 44 |
+
return ' point '.join([a, ' '.join(b)])
|
| 45 |
+
|
| 46 |
+
def normalize_text(text):
|
| 47 |
+
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
| 48 |
+
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
| 49 |
+
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
| 50 |
+
text = text.replace('(', '«').replace(')', '»')
|
| 51 |
+
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
| 52 |
+
text = text.replace(a, b+' ')
|
| 53 |
+
text = re.sub(r'[^\S \n]', ' ', text)
|
| 54 |
+
text = re.sub(r' +', ' ', text)
|
| 55 |
+
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
| 56 |
+
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
| 57 |
+
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
| 58 |
+
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
| 59 |
+
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
| 60 |
+
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
| 61 |
+
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
| 62 |
+
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
| 63 |
+
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
| 64 |
+
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
| 65 |
+
text = re.sub(r'\d*\.\d+', point_num, text)
|
| 66 |
+
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
| 67 |
+
text = re.sub(r'(?<=\d)S', ' S', text)
|
| 68 |
+
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
| 69 |
+
text = re.sub(r"(?<=X')S\b", 's', text)
|
| 70 |
+
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
| 71 |
+
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
| 72 |
+
return text.strip()
|
| 73 |
+
|
| 74 |
+
def get_vocab():
|
| 75 |
+
_pad = "$"
|
| 76 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
| 77 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
| 78 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
| 79 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
| 80 |
+
dicts = {}
|
| 81 |
+
for i in range(len((symbols))):
|
| 82 |
+
dicts[symbols[i]] = i
|
| 83 |
+
return dicts
|
| 84 |
+
|
| 85 |
+
VOCAB = get_vocab()
|
| 86 |
+
def tokenize(ps):
|
| 87 |
+
return [i for i in map(VOCAB.get, ps) if i is not None]
|
| 88 |
+
|
| 89 |
+
phonemizers = dict(
|
| 90 |
+
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
| 91 |
+
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
| 92 |
+
)
|
| 93 |
+
def phonemize(text, lang, norm=True):
|
| 94 |
+
if norm:
|
| 95 |
+
text = normalize_text(text)
|
| 96 |
+
ps = phonemizers[lang].phonemize([text])
|
| 97 |
+
ps = ps[0] if ps else ''
|
| 98 |
+
# https://en.wiktionary.org/wiki/kokoro#English
|
| 99 |
+
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
| 100 |
+
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
| 101 |
+
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
| 102 |
+
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
| 103 |
+
if lang == 'a':
|
| 104 |
+
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
| 105 |
+
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
| 106 |
+
return ps.strip()
|
| 107 |
+
|
| 108 |
+
def length_to_mask(lengths):
|
| 109 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 110 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 111 |
+
return mask
|
| 112 |
+
|
| 113 |
+
@torch.no_grad()
|
| 114 |
+
def forward(model, tokens, ref_s, speed):
|
| 115 |
+
device = ref_s.device
|
| 116 |
+
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
| 117 |
+
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
| 118 |
+
text_mask = length_to_mask(input_lengths).to(device)
|
| 119 |
+
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
| 120 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 121 |
+
s = ref_s[:, 128:]
|
| 122 |
+
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
| 123 |
+
x, _ = model.predictor.lstm(d)
|
| 124 |
+
duration = model.predictor.duration_proj(x)
|
| 125 |
+
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
| 126 |
+
pred_dur = torch.round(duration).clamp(min=1).long()
|
| 127 |
+
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
| 128 |
+
c_frame = 0
|
| 129 |
+
for i in range(pred_aln_trg.size(0)):
|
| 130 |
+
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
| 131 |
+
c_frame += pred_dur[0,i].item()
|
| 132 |
+
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
| 133 |
+
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
| 134 |
+
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
| 135 |
+
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
| 136 |
+
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
| 137 |
+
|
| 138 |
+
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
| 139 |
+
ps = ps or phonemize(text, lang)
|
| 140 |
+
tokens = tokenize(ps)
|
| 141 |
+
if not tokens:
|
| 142 |
+
return None
|
| 143 |
+
elif len(tokens) > 510:
|
| 144 |
+
tokens = tokens[:510]
|
| 145 |
+
print('Truncated to 510 tokens')
|
| 146 |
+
ref_s = voicepack[len(tokens)]
|
| 147 |
+
out = forward(model, tokens, ref_s, speed)
|
| 148 |
+
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
| 149 |
+
return out, ps
|
models.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
| 2 |
+
from istftnet import AdaIN1d, Decoder
|
| 3 |
+
from munch import Munch
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from plbert import load_plbert
|
| 6 |
+
from torch.nn.utils import weight_norm, spectral_norm
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
import os.path as osp
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
class LinearNorm(torch.nn.Module):
|
| 16 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 17 |
+
super(LinearNorm, self).__init__()
|
| 18 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 19 |
+
|
| 20 |
+
torch.nn.init.xavier_uniform_(
|
| 21 |
+
self.linear_layer.weight,
|
| 22 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
return self.linear_layer(x)
|
| 26 |
+
|
| 27 |
+
class LayerNorm(nn.Module):
|
| 28 |
+
def __init__(self, channels, eps=1e-5):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.channels = channels
|
| 31 |
+
self.eps = eps
|
| 32 |
+
|
| 33 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 34 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
x = x.transpose(1, -1)
|
| 38 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 39 |
+
return x.transpose(1, -1)
|
| 40 |
+
|
| 41 |
+
class TextEncoder(nn.Module):
|
| 42 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
| 45 |
+
|
| 46 |
+
padding = (kernel_size - 1) // 2
|
| 47 |
+
self.cnn = nn.ModuleList()
|
| 48 |
+
for _ in range(depth):
|
| 49 |
+
self.cnn.append(nn.Sequential(
|
| 50 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
| 51 |
+
LayerNorm(channels),
|
| 52 |
+
actv,
|
| 53 |
+
nn.Dropout(0.2),
|
| 54 |
+
))
|
| 55 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
| 56 |
+
|
| 57 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
| 58 |
+
|
| 59 |
+
def forward(self, x, input_lengths, m):
|
| 60 |
+
x = self.embedding(x) # [B, T, emb]
|
| 61 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
| 62 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
| 63 |
+
x.masked_fill_(m, 0.0)
|
| 64 |
+
|
| 65 |
+
for c in self.cnn:
|
| 66 |
+
x = c(x)
|
| 67 |
+
x.masked_fill_(m, 0.0)
|
| 68 |
+
|
| 69 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
| 70 |
+
|
| 71 |
+
input_lengths = input_lengths.cpu().numpy()
|
| 72 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 73 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 74 |
+
|
| 75 |
+
self.lstm.flatten_parameters()
|
| 76 |
+
x, _ = self.lstm(x)
|
| 77 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 78 |
+
x, batch_first=True)
|
| 79 |
+
|
| 80 |
+
x = x.transpose(-1, -2)
|
| 81 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 82 |
+
|
| 83 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 84 |
+
x = x_pad.to(x.device)
|
| 85 |
+
|
| 86 |
+
x.masked_fill_(m, 0.0)
|
| 87 |
+
|
| 88 |
+
return x
|
| 89 |
+
|
| 90 |
+
def inference(self, x):
|
| 91 |
+
x = self.embedding(x)
|
| 92 |
+
x = x.transpose(1, 2)
|
| 93 |
+
x = self.cnn(x)
|
| 94 |
+
x = x.transpose(1, 2)
|
| 95 |
+
self.lstm.flatten_parameters()
|
| 96 |
+
x, _ = self.lstm(x)
|
| 97 |
+
return x
|
| 98 |
+
|
| 99 |
+
def length_to_mask(self, lengths):
|
| 100 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 101 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 102 |
+
return mask
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class UpSample1d(nn.Module):
|
| 106 |
+
def __init__(self, layer_type):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.layer_type = layer_type
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
if self.layer_type == 'none':
|
| 112 |
+
return x
|
| 113 |
+
else:
|
| 114 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 115 |
+
|
| 116 |
+
class AdainResBlk1d(nn.Module):
|
| 117 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 118 |
+
upsample='none', dropout_p=0.0):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.actv = actv
|
| 121 |
+
self.upsample_type = upsample
|
| 122 |
+
self.upsample = UpSample1d(upsample)
|
| 123 |
+
self.learned_sc = dim_in != dim_out
|
| 124 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 125 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 126 |
+
|
| 127 |
+
if upsample == 'none':
|
| 128 |
+
self.pool = nn.Identity()
|
| 129 |
+
else:
|
| 130 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 134 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 135 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 136 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 137 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 138 |
+
if self.learned_sc:
|
| 139 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 140 |
+
|
| 141 |
+
def _shortcut(self, x):
|
| 142 |
+
x = self.upsample(x)
|
| 143 |
+
if self.learned_sc:
|
| 144 |
+
x = self.conv1x1(x)
|
| 145 |
+
return x
|
| 146 |
+
|
| 147 |
+
def _residual(self, x, s):
|
| 148 |
+
x = self.norm1(x, s)
|
| 149 |
+
x = self.actv(x)
|
| 150 |
+
x = self.pool(x)
|
| 151 |
+
x = self.conv1(self.dropout(x))
|
| 152 |
+
x = self.norm2(x, s)
|
| 153 |
+
x = self.actv(x)
|
| 154 |
+
x = self.conv2(self.dropout(x))
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
def forward(self, x, s):
|
| 158 |
+
out = self._residual(x, s)
|
| 159 |
+
out = (out + self._shortcut(x)) / np.sqrt(2)
|
| 160 |
+
return out
|
| 161 |
+
|
| 162 |
+
class AdaLayerNorm(nn.Module):
|
| 163 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.channels = channels
|
| 166 |
+
self.eps = eps
|
| 167 |
+
|
| 168 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 169 |
+
|
| 170 |
+
def forward(self, x, s):
|
| 171 |
+
x = x.transpose(-1, -2)
|
| 172 |
+
x = x.transpose(1, -1)
|
| 173 |
+
|
| 174 |
+
h = self.fc(s)
|
| 175 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 176 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 177 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 181 |
+
x = (1 + gamma) * x + beta
|
| 182 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 183 |
+
|
| 184 |
+
class ProsodyPredictor(nn.Module):
|
| 185 |
+
|
| 186 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
| 187 |
+
super().__init__()
|
| 188 |
+
|
| 189 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
| 190 |
+
d_model=d_hid,
|
| 191 |
+
nlayers=nlayers,
|
| 192 |
+
dropout=dropout)
|
| 193 |
+
|
| 194 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 195 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
| 196 |
+
|
| 197 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 198 |
+
self.F0 = nn.ModuleList()
|
| 199 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 200 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 201 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 202 |
+
|
| 203 |
+
self.N = nn.ModuleList()
|
| 204 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 205 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 206 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 207 |
+
|
| 208 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 209 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def forward(self, texts, style, text_lengths, alignment, m):
|
| 213 |
+
d = self.text_encoder(texts, style, text_lengths, m)
|
| 214 |
+
|
| 215 |
+
batch_size = d.shape[0]
|
| 216 |
+
text_size = d.shape[1]
|
| 217 |
+
|
| 218 |
+
# predict duration
|
| 219 |
+
input_lengths = text_lengths.cpu().numpy()
|
| 220 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 221 |
+
d, input_lengths, batch_first=True, enforce_sorted=False)
|
| 222 |
+
|
| 223 |
+
m = m.to(text_lengths.device).unsqueeze(1)
|
| 224 |
+
|
| 225 |
+
self.lstm.flatten_parameters()
|
| 226 |
+
x, _ = self.lstm(x)
|
| 227 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 228 |
+
x, batch_first=True)
|
| 229 |
+
|
| 230 |
+
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
| 231 |
+
|
| 232 |
+
x_pad[:, :x.shape[1], :] = x
|
| 233 |
+
x = x_pad.to(x.device)
|
| 234 |
+
|
| 235 |
+
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
| 236 |
+
|
| 237 |
+
en = (d.transpose(-1, -2) @ alignment)
|
| 238 |
+
|
| 239 |
+
return duration.squeeze(-1), en
|
| 240 |
+
|
| 241 |
+
def F0Ntrain(self, x, s):
|
| 242 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
| 243 |
+
|
| 244 |
+
F0 = x.transpose(-1, -2)
|
| 245 |
+
for block in self.F0:
|
| 246 |
+
F0 = block(F0, s)
|
| 247 |
+
F0 = self.F0_proj(F0)
|
| 248 |
+
|
| 249 |
+
N = x.transpose(-1, -2)
|
| 250 |
+
for block in self.N:
|
| 251 |
+
N = block(N, s)
|
| 252 |
+
N = self.N_proj(N)
|
| 253 |
+
|
| 254 |
+
return F0.squeeze(1), N.squeeze(1)
|
| 255 |
+
|
| 256 |
+
def length_to_mask(self, lengths):
|
| 257 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 258 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 259 |
+
return mask
|
| 260 |
+
|
| 261 |
+
class DurationEncoder(nn.Module):
|
| 262 |
+
|
| 263 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.lstms = nn.ModuleList()
|
| 266 |
+
for _ in range(nlayers):
|
| 267 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
| 268 |
+
d_model // 2,
|
| 269 |
+
num_layers=1,
|
| 270 |
+
batch_first=True,
|
| 271 |
+
bidirectional=True,
|
| 272 |
+
dropout=dropout))
|
| 273 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
self.dropout = dropout
|
| 277 |
+
self.d_model = d_model
|
| 278 |
+
self.sty_dim = sty_dim
|
| 279 |
+
|
| 280 |
+
def forward(self, x, style, text_lengths, m):
|
| 281 |
+
masks = m.to(text_lengths.device)
|
| 282 |
+
|
| 283 |
+
x = x.permute(2, 0, 1)
|
| 284 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
| 285 |
+
x = torch.cat([x, s], axis=-1)
|
| 286 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
| 287 |
+
|
| 288 |
+
x = x.transpose(0, 1)
|
| 289 |
+
input_lengths = text_lengths.cpu().numpy()
|
| 290 |
+
x = x.transpose(-1, -2)
|
| 291 |
+
|
| 292 |
+
for block in self.lstms:
|
| 293 |
+
if isinstance(block, AdaLayerNorm):
|
| 294 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
| 295 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
| 296 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
| 297 |
+
else:
|
| 298 |
+
x = x.transpose(-1, -2)
|
| 299 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 300 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 301 |
+
block.flatten_parameters()
|
| 302 |
+
x, _ = block(x)
|
| 303 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 304 |
+
x, batch_first=True)
|
| 305 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 306 |
+
x = x.transpose(-1, -2)
|
| 307 |
+
|
| 308 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 309 |
+
|
| 310 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 311 |
+
x = x_pad.to(x.device)
|
| 312 |
+
|
| 313 |
+
return x.transpose(-1, -2)
|
| 314 |
+
|
| 315 |
+
def inference(self, x, style):
|
| 316 |
+
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
| 317 |
+
style = style.expand(x.shape[0], x.shape[1], -1)
|
| 318 |
+
x = torch.cat([x, style], axis=-1)
|
| 319 |
+
src = self.pos_encoder(x)
|
| 320 |
+
output = self.transformer_encoder(src).transpose(0, 1)
|
| 321 |
+
return output
|
| 322 |
+
|
| 323 |
+
def length_to_mask(self, lengths):
|
| 324 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 325 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 326 |
+
return mask
|
| 327 |
+
|
| 328 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
| 329 |
+
def recursive_munch(d):
|
| 330 |
+
if isinstance(d, dict):
|
| 331 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
| 332 |
+
elif isinstance(d, list):
|
| 333 |
+
return [recursive_munch(v) for v in d]
|
| 334 |
+
else:
|
| 335 |
+
return d
|
| 336 |
+
|
| 337 |
+
def build_model(path, device):
|
| 338 |
+
config = Path(__file__).parent / 'config.json'
|
| 339 |
+
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
| 340 |
+
with open(config, 'r') as r:
|
| 341 |
+
args = recursive_munch(json.load(r))
|
| 342 |
+
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
| 343 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
| 344 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
| 345 |
+
upsample_rates = args.decoder.upsample_rates,
|
| 346 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
| 347 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
| 348 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
| 349 |
+
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
| 350 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
| 351 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
| 352 |
+
bert = load_plbert()
|
| 353 |
+
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
| 354 |
+
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
| 355 |
+
for child in parent.children():
|
| 356 |
+
if isinstance(child, nn.RNNBase):
|
| 357 |
+
child.flatten_parameters()
|
| 358 |
+
model = Munch(
|
| 359 |
+
bert=bert.to(device).eval(),
|
| 360 |
+
bert_encoder=bert_encoder.to(device).eval(),
|
| 361 |
+
predictor=predictor.to(device).eval(),
|
| 362 |
+
decoder=decoder.to(device).eval(),
|
| 363 |
+
text_encoder=text_encoder.to(device).eval(),
|
| 364 |
+
)
|
| 365 |
+
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
| 366 |
+
assert key in model, key
|
| 367 |
+
try:
|
| 368 |
+
model[key].load_state_dict(state_dict)
|
| 369 |
+
except:
|
| 370 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 371 |
+
model[key].load_state_dict(state_dict, strict=False)
|
| 372 |
+
return model
|
plbert.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
| 2 |
+
from transformers import AlbertConfig, AlbertModel
|
| 3 |
+
|
| 4 |
+
class CustomAlbert(AlbertModel):
|
| 5 |
+
def forward(self, *args, **kwargs):
|
| 6 |
+
# Call the original forward method
|
| 7 |
+
outputs = super().forward(*args, **kwargs)
|
| 8 |
+
# Only return the last_hidden_state
|
| 9 |
+
return outputs.last_hidden_state
|
| 10 |
+
|
| 11 |
+
def load_plbert():
|
| 12 |
+
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
|
| 13 |
+
albert_base_configuration = AlbertConfig(**plbert_config)
|
| 14 |
+
bert = CustomAlbert(albert_base_configuration)
|
| 15 |
+
return bert
|
voices/af.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fad4192fd8a840f925b0e3fc2be54e20531f91a9ac816a485b7992ca0bd83ebf
|
| 3 |
+
size 524355
|
voices/af_bella.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2828c6c2f94275ef3441a2edfcf48293298ee0f9b56ce70fb2e344345487b922
|
| 3 |
+
size 524449
|
voices/af_nicole.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9401802fb0b7080c324dec1a75d60f31d977ced600a99160e095dbc5a1172692
|
| 3 |
+
size 524454
|
voices/af_sarah.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba7918c4ace6ace4221e7e01eb3a6d16596cba9729850551c758cd2ad3a4cd08
|
| 3 |
+
size 524449
|
voices/af_sky.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f16f1bb778de36a177ae4b0b6f1e59783d5f4d3bcecf752c3e1ee98299b335e
|
| 3 |
+
size 524375
|
voices/am_adam.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1921528b400a553f66528c27899d95780918fe33b1ac7e2a871f6a0de475f176
|
| 3 |
+
size 524444
|
voices/am_michael.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a255c9562c363103adc56c09b7daf837139d3bdaa8bd4dd74847ab1e3e8c28be
|
| 3 |
+
size 524459
|
voices/bf_emma.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:992e6d8491b8926ef4a16205250e51a21d9924405a5d37e2db6e94adfd965c3b
|
| 3 |
+
size 524365
|
voices/bf_isabella.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0865a03931230100167f7a81d394b143c072efe2d7e4c4a87b5c54d6283f580
|
| 3 |
+
size 524365
|
voices/bm_george.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d763dfe13e934357f4d8322b718787d79e32f2181e29ca0cf6aa637d8092b96
|
| 3 |
+
size 524464
|
voices/bm_lewis.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f70d9ea4d65f522f224628f06d86ea74279faae23bd7e765848a374aba916b76
|
| 3 |
+
size 524449
|