File size: 1,985 Bytes
79a1e19 851e779 79a1e19 ef926ca 79a1e19 ef926ca 79a1e19 a6ebcc2 d0267aa a6ebcc2 79a1e19 a6ebcc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model:
- CompVis/stable-diffusion-v1-4
- RiddleHe/SD14_pathology_lora
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# controlnet-RiddleHe/SD14_pathology_controlnet
These are controlnet weights trained on CompVis/stable-diffusion-v1-4 with new type of conditioning.
You can find some example images below.
prompt: A histopathology image of breast cancer tissue.

prompt: An image of breast cancer histopathology with detailed cellular structures.

## Intended uses & limitations
#### How to use
```python
controlnet = ControlNetModel.from_pretrained("RiddleHe/SD14_pathology_controlnet", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"RiddleHe/SD14_pathology_base", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
prompt = "A histopathology image of breast cancer tissue."
mask = mask.convert("RGB") # Provide a mask
generator = torch.Generator(device='cuda').manual_seed(42)
with torch.no_grad():
out = pipe(prompt, image=mask, num_inference_steps=70, num_images_per_prompt=3, generator=generator).images
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
The model is trained on 28216 image-mask pairs from the BRCA breast cancer dataset. Input is mask and output is image.
Mask is a single channel image with integer values from 0 to 21 representing 22 classes, eg. 1 representing tumor, 2 representing stroma. |