--- base_model: Qwen/Qwen3-0.6B library_name: peft --- # Sanity Check Model This model is fine-tuned on the sanity check dataset for multiple choice question answering. ## Model Details - Base model: Qwen/Qwen3-0.6B - Fine-tuning method: LoRA - Task: Multiple Choice Question Answering (MCQA) ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RikoteMaster/sanity_check_model") tokenizer = AutoTokenizer.from_pretrained("RikoteMaster/sanity_check_model") # Example usage question = "What is 2+2?" choices = ["3", "4", "5", "6"] messages = [{ "role": "user", "content": question + "\n" + "\n".join([f"{chr(65+i)}. {choice}" for i, choice in enumerate(choices)]) }] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=10) print(tokenizer.decode(outputs[0])) ### Framework versions - PEFT 0.15.2