CoDA-v0-Base / modeling_coda.py
hlnchen's picture
update model
8ae6c69 verified
"""
Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen3/modeling_qwen3.py
"""
from typing import Callable, Optional, Tuple, Union
import torch
from torch import nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.utils import logging
from .model_config import CoDAConfig
from .attention import AttentionModule
from .modeling_utils import (
HomogeneousSequential,
RopeScaling,
default_rope_frequencies,
apply_rotary_pos_emb,
transition,
prefix_input_ids,
truncate_input_ids,
)
from .generation_utils import DLMGenerationMixin, DLMGenerationConfig
logger = logging.get_logger(__name__)
class CoDARMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class CoDAMLP(nn.Module):
def __init__(self, config: CoDAConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class CoDAAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: CoDAConfig, layer_idx: int | None = None):
super().__init__()
self.config = config
self.attention_block = AttentionModule(config)
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = getattr(config, "attention_dropout", 0.0)
# weiran: diffullama
self.is_causal = False
self.q_proj = nn.Linear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=getattr(config, "attention_bias", False),
)
self.k_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=getattr(config, "attention_bias", False),
)
self.v_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=getattr(config, "attention_bias", False),
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=getattr(config, "attention_bias", False),
)
self.q_norm = CoDARMSNorm(
self.head_dim, eps=getattr(config, "rms_norm_eps", 1e-6)
)
self.k_norm = CoDARMSNorm(
self.head_dim, eps=getattr(config, "rms_norm_eps", 1e-6)
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
) -> torch.FloatTensor:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Apply q_norm and k_norm to the head dimension
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
)
# Apply normalization
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
# Transpose to get the right shape for attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin
)
attn_output = self.attention_block(
query_states, key_states, value_states, attention_mask
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
class CoDARotaryEmbedding(nn.Module):
inv_freq: nn.Buffer
def __init__(
self,
head_dim,
rope_theta,
scaling: RopeScaling | None = None,
):
super().__init__()
if scaling is None:
inv_freq = default_rope_frequencies(head_dim, theta=rope_theta)
else:
raise NotImplementedError("Scaling is not implemented")
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids):
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = (
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = (
device_type
if isinstance(device_type, str) and device_type != "mps"
else "cpu"
)
with torch.autocast(device_type=device_type, enabled=False):
freqs = (
inv_freq_expanded.float() @ position_ids_expanded.float()
).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class CoDADecoderLayer(nn.Module):
def __init__(self, config: CoDAConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.self_attn = CoDAAttention(config=config, layer_idx=layer_idx)
self.mlp = CoDAMLP(config)
self.input_layernorm = CoDARMSNorm(
config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-6)
)
self.post_attention_layernorm = CoDARMSNorm(
config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-6)
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor | None = None,
position_ids: torch.Tensor | None = None,
position_embeddings: (
tuple[torch.Tensor, torch.Tensor] | None
) = None, # necessary, but kept here for BC
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
"""
# This gives the `hidden_states` tensor a name so that we can layer specify
# to offload this tensor to host RAM to save memory. This is not a standard
# torch API because there is no such feature in PyTorch. Instead, the name
# becomes node metadata during FX graph capture.
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class CoDAModel(PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers.
Args:
config: FlexConfig
"""
config_class = CoDAConfig
def __init__(self, config: CoDAConfig):
super().__init__(config=config)
self.vocab_size = config.vocab_size
if "pad_token_id" not in config:
self.padding_idx = None
else:
self.padding_idx = config.pad_token_id
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
)
# `HomogeneousSequential` is similar to `nn.Sequential` but can be compiled with
# `scan` described in https://pytorch.org/xla/release/r2.6/features/scan.html.
self.layers = HomogeneousSequential(
*[
CoDADecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = CoDARMSNorm(
config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-6)
)
rope_scaling = getattr(config, "rope_scaling", None)
head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
self.rope_theta = getattr(config, "rope_theta", 10000.0)
if rope_scaling is not None:
rope_scaling = RopeScaling(**rope_scaling)
self.rotary_emb = CoDARotaryEmbedding(
head_dim=head_dim, rope_theta=self.rope_theta, scaling=rope_scaling
)
self.post_init()
def _init_weights(self, module):
std = getattr(self.config, "initializer_range", 0.02)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.FloatTensor | None = None,
) -> torch.Tensor:
# convert input ids to embeddings
inputs_embeds = self.embed_tokens(input_ids)
seq_length = inputs_embeds.size(1)
position_ids = (
torch.arange(seq_length, device=inputs_embeds.device).unsqueeze(0).float()
)
# Create a causal attention mask
causal_mask = torch.triu(
torch.full(
(seq_length, seq_length), float("-inf"), device=inputs_embeds.device
),
diagonal=1,
)
causal_mask = causal_mask.unsqueeze(0).unsqueeze(
0
) # Add batch and head dimension
if attention_mask is not None:
causal_mask = causal_mask * attention_mask[:, None, None, :]
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
hidden_states = self.layers(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
position_embeddings=position_embeddings,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class CoDALanguageModel(DLMGenerationMixin, PreTrainedModel):
config_class = CoDAConfig
base_model_prefix = "model"
is_parallelizable = True
supports_gradient_checkpointing = False
_no_split_modules = ["FlexDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def __init__(self, config: CoDAConfig):
super().__init__(config)
self.config = config
self.model = CoDAModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.mask_token_id = config.mask_token_id
self.generation_config = DLMGenerationConfig(mask_token_id=config.mask_token_id)
self.apply(self._init_weights)
def _init_weights(self, module):
std = getattr(self.config, "initializer_range", 0.02)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def get_embeds(self, input_ids):
"""
Get input embeddings from the model.
This method is used by the diffusion trainer to access embeddings.
"""
return self.model.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.LongTensor,
labels: torch.LongTensor | None = None,
attention_mask: torch.FloatTensor | None = None,
src_mask: torch.BoolTensor | None = None,
training_mode: str = "pretrain",
**kwargs,
) -> tuple[torch.FloatTensor, torch.FloatTensor | None]:
if not self.training:
model_output = self.model(
input_ids=input_ids, attention_mask=None
)
hidden_states = model_output
logits = self.lm_head(hidden_states) # NOTE: we shift logits at inference time
return logits, None
if training_mode == "sft" and src_mask is None:
raise ValueError("SFT mode requires a non-null src_mask")
epoch = kwargs.get("epoch", None)
sampling_eps = getattr(
self.config, "sampling_eps", 1e-3
) # NOTE: use sampling_eps to control the noise level
# If sampling_eps is a list, choose based on epoch
if isinstance(sampling_eps, list):
if epoch is None:
# If epoch is not provided, use the first value
sampling_eps = sampling_eps[0]
else:
# Use modulo to cycle through the list if epoch exceeds list length
sampling_eps = sampling_eps[epoch % len(sampling_eps)]
mask_token_id = self.mask_token_id
loss_func = nn.CrossEntropyLoss(reduction="none")
batch_size, seq_len = input_ids.shape # input_ids: [batch_size, seq_len]
masking_schedule = kwargs.get("masking_schedule", None)
# Create maskable_mask based on training mode and src_mask
# For SFT: src_mask is provided, maskable_mask = ~src_mask
# For pretrain: src_mask is None, maskable_mask = all True
if src_mask is not None:
maskable_mask = ~src_mask
else: # pretrain or midtrain
maskable_mask = torch.ones_like(
input_ids, dtype=torch.bool, device=input_ids.device
)
if masking_schedule is not None:
prefix_probability = masking_schedule.get("prefix_probability", 0)
truncate_probability = masking_schedule.get("truncate_probability", 0)
else:
prefix_probability = getattr(self.config, "prefix_probability", 0)
truncate_probability = getattr(self.config, "truncate_probability", 0)
if training_mode == "sft":
prefix_probability = 0
truncate_probability = 0
# Generate random decisions for all batch items
apply_prefix = (
torch.rand(batch_size, device=input_ids.device) < prefix_probability
)
# Only apply truncation to rows that are NOT prefixed
apply_truncate = (
torch.rand(batch_size, device=input_ids.device) < truncate_probability
)
apply_truncate = apply_truncate & ~apply_prefix
if prefix_probability > 0:
maskable_mask = prefix_input_ids(input_ids, maskable_mask, apply_prefix)
if truncate_probability > 0:
input_ids = truncate_input_ids(
input_ids, apply_truncate, self.config.pad_token_id
)
maskable_mask = maskable_mask & (input_ids != self.config.pad_token_id)
# add noise to input_ids
sigma = (1 - sampling_eps) * torch.rand(
input_ids.shape[0], device=input_ids.device
) + sampling_eps
dsigma = torch.reciprocal(sigma)
# Sample mask block size
# Use mask_block_sizes from masking_probs if provided, otherwise fall back to config
if masking_schedule is not None and "mask_block_sizes" in masking_schedule:
mask_block_sizes = masking_schedule["mask_block_sizes"]
else:
mask_block_sizes = getattr(self.config, "mask_block_sizes", None)
# Use masking_config if provided, otherwise fall back to config values
if masking_schedule is not None:
block_masking_probability = masking_schedule.get(
"block_masking_probability", 0
)
else:
block_masking_probability = getattr(
self.config, "block_masking_probability", 0
)
if isinstance(block_masking_probability, list):
if epoch is None:
block_masking_probability = block_masking_probability[0]
else:
block_masking_probability = block_masking_probability[
epoch % len(block_masking_probability)
]
if block_masking_probability > 0 and mask_block_sizes is not None and len(mask_block_sizes) > 0:
mask_block_size = mask_block_sizes[
torch.randint(0, len(mask_block_sizes), (1,)).item()
]
else:
mask_block_size = 1
noisy_input_ids = transition(
input_ids,
sigma[:, None],
maskable_mask=maskable_mask,
mask_token_id=mask_token_id,
mask_block_size=mask_block_size,
)
loss_mask = noisy_input_ids == mask_token_id
# Use gradient checkpointing if enabled
if (
hasattr(self, "gradient_checkpointing")
and self.gradient_checkpointing
and self.training
):
# Define a function for gradient checkpointing
def custom_forward(*inputs):
return self.model(*inputs)
# Apply gradient checkpointing to the model forward pass
hidden_states = self._gradient_checkpointing_func(
custom_forward, noisy_input_ids, attention_mask
)
else:
hidden_states = self.model(
input_ids=noisy_input_ids, attention_mask=attention_mask
)
logits = self.lm_head(hidden_states)
logits = logits.float()
# logits: [bs, seq_len, vocab_size]
# Shifted logits and labels
# logits: [bs, seq_len-1, vocab_size]
logits = logits[..., :-1, :].contiguous()
# weiran: if the shifted token is not masked in the original input, the loss is 0
# loss_mask: [bs, seq_len-1]
loss_mask = loss_mask[..., 1:].contiguous()
target_ids = input_ids[..., 1:].contiguous()
# loss: [bs, seq_len-1]
loss = loss_func(
logits.reshape(-1, logits.shape[-1]), target_ids.reshape(-1)
).reshape(target_ids.shape[0], -1)
loss = loss.masked_fill(~loss_mask, 0)
# weiran: divide by the number of tokens in the sequence instead of the number of masked tokens
# justification is dsigma already accounts for the number of masked tokens
# this is a hack to get something like per token loss
# https://github.com/ML-GSAI/SMDM/blob/main/pretrain/train_mdm_rl.py#L281-L283
loss = (dsigma[:, None] * loss).sum() / (
input_ids.shape[0] * input_ids.shape[1]
)
return logits, loss