weiranyao commited on
Commit
0c5227f
·
verified ·
1 Parent(s): 65c0b6e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -4
README.md CHANGED
@@ -8,12 +8,40 @@ tags:
8
  - language model
9
  - code generation
10
  ---
11
- # CoDA: Coding LM via Diffusion Adaptation
12
 
13
- **CoDA-1.7B** is a lightweight diffusion language model for code generation developed by Salesforce AI Research. Unlike traditional autoregressive models, CoDA leverages discrete diffusion processes to enable bidirectional context understanding and efficient code completion.
 
 
14
 
15
- - 📄 [Technical Report](https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf)
16
- - 💻 [Code Repository](https://github.com/SalesforceAIResearch/CoDA/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ## 📊 Model Details
19
 
 
8
  - language model
9
  - code generation
10
  ---
 
11
 
12
+ <p align="center">
13
+ <img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
14
+ </p>
15
 
16
+ <p align="center">
17
+ <a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
18
+ <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf"><strong>Technical Report</strong></a> ·
19
+ <a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
20
+ <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
21
+ </p>
22
+
23
+ <br>
24
+
25
+ Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding.
26
+
27
+ We're releasing CoDA as a lightweight yet capable model:
28
+ - `CoDA-1.7B-Base` — diffusion foundation model with bidirectional diffusion architecture, ideal for further fine-tuning and RL training
29
+ - `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
30
+
31
+ CoDA leverages discrete diffusion processes to enable understanding of both past and future tokens, making it uniquely suited for code completion and generation tasks where context flows in both directions.
32
+
33
+ > [!NOTE]
34
+ > This model card is dedicated to the `CoDA-1.7B-Base` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
35
+
36
+ # ⭐️ Highlights
37
+
38
+ * **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
39
+ * **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
40
+ * **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
41
+ * **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
42
+ * **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
43
+
44
+ ---
45
 
46
  ## 📊 Model Details
47