from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging logger = logging.get_logger(__name__) class CoDAConfig(PretrainedConfig): model_type = "CoDA" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151936, head_dim=128, hidden_act="silu", hidden_size=2048, intermediate_size=6144, num_attention_heads=16, num_hidden_layers=28, num_key_value_heads=8, max_position_embeddings=40960, initializer_range=0.02, use_cache=True, use_sliding_window=False, tie_word_embeddings=True, rms_norm_eps=1e-6, rope_scaling=None, rope_theta=1000000, sliding_window=None, max_window_layers=28, attention_bias=False, attention_dropout=0.0, bos_token_id=151643, eos_token_id=151645, pad_token_id=151643, mask_token_id=151669, attention_kernel="flash_attention", prefix_probability=0, truncate_probability=0, block_masking_probability=[0.25, 0.5, 0.5, 0.75, 0.25], mask_block_sizes=[4, 8, 16, 32], sampling_eps=[0.001, 0.25, 0.5, 0.25, 0.001], # minimum noise level **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window if use_sliding_window else None self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) self.head_dim = head_dim self.attention_bias = attention_bias self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.attention_kernel = attention_kernel self.prefix_probability = prefix_probability self.truncate_probability = truncate_probability self.block_masking_probability = block_masking_probability self.mask_block_sizes = mask_block_sizes self.sampling_eps = sampling_eps super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.mask_token_id = mask_token_id self.pad_token_id = pad_token_id