--- title: YOLO Model tags: - yolo - object-detection - computer-vision - unknown - aegis-ai library_name: ultralytics license: agpl-3.0 --- # YOLO Model This model has been converted and optimized using the **Aegis AI Model Conversion Tool**. ## Model Details - **Original Model**: Unknown - **Format**: UNKNOWN - **Task**: Object Detection - **Framework**: Ultralytics YOLO - **License**: AGPL-3.0 ## Performance Metrics | Metric | Value | |--------|--------| | Average FPS | N/A | | Inference Time | N/A ms | | Memory Usage | N/A MB | | Target Hardware | cpu | ## Hardware Information - **Platform**: Unknown - **Device**: cpu - **Optimization**: Hardware-specific optimizations applied ## Usage ### Loading the Model ```python # For ONNX models import onnxruntime as ort session = ort.InferenceSession("model.onnx") # For PyTorch models from ultralytics import YOLO model = YOLO("model.pt") # For TensorRT models (NVIDIA GPU) # Requires TensorRT runtime model = YOLO("model.engine") ``` ### Inference ```python import numpy as np from PIL import Image # Load your image image = Image.open("path/to/image.jpg") # Run inference results = model(image) # Process results for result in results: boxes = result.boxes # Bounding boxes classes = result.names # Class names ``` ## Conversion Details This model was converted using the Aegis AI Model Conversion Tool with the following configuration: - **Precision**: fp32 - **Optimization Level**: standard - **Hardware Target**: cpu - **Conversion Date**: 2025-08-18 15:11:05 ## Model Architecture Based on the YOLO (You Only Look Once) architecture, this model provides real-time object detection capabilities with optimized performance for the target hardware. ### Input - **Shape**: 640x640 - **Format**: RGB images - **Normalization**: [0-1] range ### Output - **Bounding Boxes**: Object locations - **Confidence Scores**: Detection confidence - **Class Predictions**: Object categories ## Benchmarking The model has been benchmarked on the target hardware with the following results: ```json {} ``` ## Hardware Compatibility This model has been optimized for: - **Primary**: cpu - **Platform**: Unknown For other hardware configurations, consider using the Aegis AI Model Conversion Tool to create optimized versions. ## Citation If you use this model in your research or project, please cite: ```bibtex @misc{aegis-ai-converted-model, title={Aegis AI Converted YOLO Model}, author={Aegis AI Team}, year={2025}, howpublished={\url{https://github.com/aegis-ai/model-conversion-tool}} } ``` ## Related Models - [Original YOLO Models](https://github.com/ultralytics/ultralytics) - [Aegis AI Model Zoo](https://huggingface.co/aegis-ai) ## Support For issues with this converted model or the conversion tool: - [GitHub Issues](https://github.com/aegis-ai/model-conversion-tool/issues) - [Aegis AI Documentation](https://docs.aegis-ai.com) --- *This model was automatically converted and uploaded by the Aegis AI Model Conversion Tool.*