File size: 3,356 Bytes
e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d e46fc5f 9f9198d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
library_name: transformers
tags:
- text-classification
- sentiment-analysis
- imdb
- bert
- colab
- huggingface
- fine-tuned
license: apache-2.0
---
# π€ BERT IMDb Sentiment Classifier
A fine-tuned `bert-base-uncased` model for **binary sentiment classification** on the [IMDb movie reviews dataset](https://huggingface.co/datasets/imdb).
Trained in Google Colab using Hugging Face Transformers with ~93% test accuracy.
---
## π Model Details
### Model Description
- **Developed by:** Shubham Swarnakar
- **Shared by:** [ShubhamSwarnakar](https://huggingface.co/ShubhamSwarnakar)
- **Model type:** `BERTForSequenceClassification`
- **Language(s):** English πΊπΈ
- **License:** Apache-2.0
- **Fine-tuned from:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
### Model Sources
- **Repository:** https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model
- **Demo:** Available via Hugging Face Inference Widget
---
## β
Uses
### Direct Use
Use this model for **sentiment analysis** on English movie reviews or similar texts.
Returns either a `positive` or `negative` classification.
### Downstream Use
Can be fine-tuned further for domain-specific sentiment classification tasks.
### Out-of-Scope Use
Not designed for:
- Multilingual sentiment analysis
- Nuanced emotion detection (e.g., joy, anger, sarcasm)
- Non-movie domains without re-training
---
## β οΈ Bias, Risks, and Limitations
This model inherits potential biases from:
- Pretrained BERT weights
- IMDb dataset (may reflect demographic or cultural skew)
### Recommendations
Avoid deploying this model in high-risk applications without auditing or further fine-tuning. Misclassification risk exists, especially with ambiguous or sarcastic text.
---
## π How to Get Started
```python
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="ShubhamSwarnakar/bert-imdb-colab-model")
classifier("This movie was surprisingly entertaining!")
π§ Training Details
Training Data
Dataset: IMDb Dataset
Format: Binary sentiment (positive = 1, negative = 0)
Training Procedure
Preprocessing: Tokenized with BertTokenizerFast
Epochs: 3
Optimizer: AdamW
Scheduler: Linear LR
Batch size: 8
Trained using Colab with limited GPU resources
π Evaluation
Metrics
Final test accuracy: 93.47%
Results Summary
Epoch Validation Accuracy
1 91.80%
2 92.04%
3 92.92%
Final test accuracy on held-out IMDb test split: 93.47%
π± Environmental Impact
Estimated based on lightweight training:
Hardware Type: Google Colab GPU (T4)
Training Duration: ~2 hours
Cloud Provider: Google
Region: Unknown
Emissions Estimate: ~0.15 kg COβeq
Estimate via ML CO2 Impact Calculator
ποΈ Technical Specifications
Architecture
BERT-base (12-layer, 768-hidden, 12-heads, 110M parameters)
Compute Infrastructure
Hardware: Google Colab with GPU
Software:
Python 3.11
Transformers 4.x
Datasets
PyTorch 2.x
π Citation
@misc{shubhamswarnakar_bert_imdb_2025,
author = {Shubham Swarnakar},
title = {BERT IMDb Sentiment Classifier},
year = 2025,
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model}},
}
π More Info
For questions or collaboration, contact @ShubhamSwarnakar.
|