File size: 3,978 Bytes
cfa1fc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from google.colab import drive
drive.mount('/content/drive')
import tensorflow as tf
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.layers import GlobalAveragePooling2D, Dropout, Dense, BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2
from tensorflow.keras.preprocessing import image_dataset_from_directory
import matplotlib.pyplot as plt
import numpy as np
from energyCnV import EnergyMonitor
# Dataset paths
train_dir = " " # Training data URI
val_dir = " " # Validiation or testing data URI
IMG_SIZE = (224, 224)
BATCH_SIZE = 32
# Load datasets
train_dataset = image_dataset_from_directory(
train_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
seed=42
)
val_dataset = image_dataset_from_directory(
val_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
seed=42
)
# Data augmentation
data_augmentation = tf.keras.Sequential([
tf.keras.layers.RandomFlip('horizontal'),
tf.keras.layers.RandomRotation(0.2),
tf.keras.layers.RandomZoom(0.3),
])
# EfficientNet preprocessing
preprocess_input = tf.keras.applications.efficientnet.preprocess_input
# Model builder
def build_fall_model():
input_shape = IMG_SIZE + (3,)
base_model = EfficientNetB0(include_top=False, input_shape=input_shape, weights="imagenet")
base_model.trainable = False # Freeze base model initially
inputs = tf.keras.Input(shape=input_shape)
x = data_augmentation(inputs)
x = preprocess_input(x)
x = base_model(x, training=False)
x = GlobalAveragePooling2D()(x)
x = BatchNormalization()(x)
x = Dropout(0.4)(x)
outputs = Dense(1, activation='sigmoid', kernel_regularizer=l2(0.001))(x)
model = Model(inputs, outputs)
return model, base_model
# Build and compile model
model, base_model = build_fall_model()
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss='binary_crossentropy',
metrics=['accuracy'])
# Initial training
initial_epochs = 10
history = model.fit(train_dataset, validation_data=val_dataset, epochs=initial_epochs)
# Fine-tuning
base_model.trainable = True
fine_tune_at = 150
for layer in base_model.layers[:fine_tune_at]:
layer.trainable = False
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss='binary_crossentropy',
metrics=['accuracy'])
fine_tune_epochs = 5
total_epochs = initial_epochs + fine_tune_epochs
history_fine = model.fit(train_dataset, validation_data=val_dataset,
epochs=total_epochs, initial_epoch=history.epoch[-1]+1)
# Plot Accuracy and Loss
acc = history.history['accuracy'] + history_fine.history['accuracy']
val_acc = history.history['val_accuracy'] + history_fine.history['val_accuracy']
loss = history.history['loss'] + history_fine.history['loss']
val_loss = history.history['val_loss'] + history_fine.history['val_loss']
epochs_range = range(len(acc))
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
from tensorflow.keras.preprocessing import image
img_path = " " # Test Image URI
img = image.load_img(img_path, target_size=IMG_SIZE)
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
plt.imshow(img)
plt.axis("off")
plt.show()
prediction = model.predict(img_array)
print(prediction)
if prediction[0] < 0.5:
print("Prediction: 🚨 Fall Detected! 🚨")
else:
print("Prediction: ✅ No Fall Detected.") |