File size: 1,757 Bytes
087d257 a311ff2 087d257 3ea58c1 087d257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-4.0
base_model: AIMH/mental-bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BERTForDetectingDepression-Twitter2020
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTForDetectingDepression-Twitter2020
This model is a fine-tuned version of [AIMH/mental-bert-base-cased](https://huggingface.co/AIMH/mental-bert-base-cased) on data taken from [Safa, R., Bayat, P. & Moghtader, L. Automatic detection of depression symptoms in twitter using multimodal analysis. J Supercomput (2021).](https://doi.org/10.1007/s11227-021-04040-8).
It achieves the following results on the evaluation set:
- Loss: 0.8966
- Accuracy: 0.6445
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Eval Accuracy: 0.6445
Eval Precision: 0.627281460134486
Eval Recall: 0.6690573770491803
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.083803249747333e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6484 | 1.0 | 4500 | 0.6851 | 0.637 |
| 0.5904 | 2.0 | 9000 | 0.8966 | 0.6445 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|