Question Answering
Transformers
Safetensors
English
doge
text-generation
trl
sft
dpo
custom_code
File size: 36,345 Bytes
6098d61
 
 
 
 
 
 
d982b17
6098d61
d982b17
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
6098d61
 
 
 
 
 
d982b17
6098d61
d982b17
 
 
 
 
 
 
6098d61
d982b17
 
6098d61
 
 
d982b17
 
6098d61
 
d982b17
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
6098d61
d982b17
6098d61
d982b17
 
 
6098d61
 
d982b17
 
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
 
6098d61
 
 
d982b17
6098d61
 
 
 
d982b17
 
6098d61
 
 
 
 
 
 
 
 
 
 
d982b17
6098d61
 
 
 
d982b17
 
 
 
 
 
 
 
 
6098d61
 
d982b17
6098d61
 
 
d982b17
6098d61
d982b17
6098d61
 
d982b17
 
 
 
 
 
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
 
6098d61
 
d982b17
6098d61
 
 
 
 
 
 
 
d982b17
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
 
 
d982b17
6098d61
 
d982b17
6098d61
 
 
 
 
d982b17
6098d61
 
 
 
d982b17
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
6098d61
 
d982b17
 
6098d61
 
 
 
 
d982b17
6098d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d982b17
 
6098d61
 
 
d982b17
 
 
6098d61
 
 
d982b17
 
6098d61
 
d982b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6098d61
 
 
 
d982b17
6098d61
d982b17
 
 
 
 
 
6098d61
 
d982b17
 
 
6098d61
 
d982b17
6098d61
d982b17
 
 
6098d61
 
d982b17
 
 
 
 
 
 
 
 
6098d61
d982b17
 
6098d61
d982b17
 
 
6098d61
 
 
 
 
 
 
 
d982b17
 
6098d61
d982b17
 
6098d61
d982b17
 
 
 
 
 
 
 
 
 
6098d61
 
d982b17
 
 
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
 
 
d982b17
 
 
6098d61
d982b17
 
 
6098d61
 
 
 
d982b17
6098d61
 
d982b17
6098d61
 
d982b17
 
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
 
 
 
 
 
 
d982b17
6098d61
 
 
d982b17
 
6098d61
d982b17
6098d61
d982b17
6098d61
 
d982b17
6098d61
d982b17
6098d61
 
 
 
d982b17
6098d61
d982b17
 
 
 
 
 
 
 
6098d61
 
d982b17
 
 
 
 
 
 
 
 
 
 
 
 
6098d61
 
 
 
 
 
d982b17
6098d61
 
 
d982b17
 
6098d61
 
 
 
 
d982b17
 
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
 
d982b17
 
6098d61
d982b17
6098d61
 
 
 
d982b17
 
 
6098d61
 
 
 
 
 
 
 
d982b17
 
 
 
 
 
 
 
6098d61
 
 
 
 
 
 
 
d982b17
 
 
 
 
 
 
 
 
 
6098d61
d982b17
6098d61
d982b17
 
 
 
6098d61
 
d982b17
 
 
 
 
 
 
 
 
6098d61
d982b17
 
 
6098d61
d982b17
 
 
 
 
 
 
 
 
 
 
 
 
 
6098d61
d982b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6098d61
d982b17
6098d61
d982b17
 
 
 
 
 
6098d61
d982b17
 
 
 
 
 
 
 
 
 
 
 
6098d61
d982b17
 
6098d61
 
d982b17
6098d61
 
 
d982b17
6098d61
d982b17
6098d61
 
 
 
d982b17
 
 
6098d61
 
 
 
d982b17
 
6098d61
 
 
 
d982b17
 
6098d61
 
d982b17
6098d61
 
d982b17
6098d61
 
 
 
 
d982b17
 
 
6098d61
d982b17
 
 
 
6098d61
 
 
 
d982b17
6098d61
d982b17
 
6098d61
 
 
 
 
 
 
 
 
d982b17
 
6098d61
 
d982b17
 
6098d61
 
 
 
 
 
 
 
 
 
d982b17
 
6098d61
 
 
 
 
d982b17
 
 
 
 
 
 
 
 
 
 
 
 
6098d61
d982b17
6098d61
d982b17
6098d61
 
 
 
d982b17
6098d61
 
 
d982b17
 
6098d61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
#                馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
#           This file was automatically generated from src/transformers/models/doge/modular_doge.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_doge.py file directly. One of our CI enforces this.
#                馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
# coding=utf-8
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
#
# The Doge family of small language models is trained by SmallDoge Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Callable, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.integrations.flex_attention import compile_friendly_flex_attention
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_layers import GenericForSequenceClassification, GradientCheckpointingLayer
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import AttentionInterface, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available
from transformers.utils.generic import OutputRecorder, check_model_inputs
from .configuration_doge import DogeConfig


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask


@use_kernel_forward_from_hub("RMSNorm")
class DogeRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        DogeRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class DogeResidual(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))

    def forward(self, residual_states, hidden_states):
        return self.weight * residual_states + hidden_states

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}"


class DogeRotaryEmbedding(nn.Module):
    def __init__(self, config: DogeConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


def flex_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Union[torch.Tensor, "BlockMask"],
    scaling: Optional[float] = None,
    softcap: Optional[float] = None,
    head_mask: Optional[torch.Tensor] = None,
    **kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
    block_mask = None
    causal_mask = None
    if isinstance(attention_mask, BlockMask):
        block_mask = attention_mask
    else:
        causal_mask = attention_mask

    if causal_mask is not None:
        causal_mask = causal_mask[:, :, :, : key.shape[-2]]

    def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
        if softcap is not None:
            score = softcap * torch.tanh(score / softcap)
        if causal_mask is not None:
            score = score + causal_mask[batch_idx][head_idx][q_idx][kv_idx]
        if head_mask is not None:
            score = score + head_mask[batch_idx][head_idx][0][0]
        return score

    attn_output, attention_weights = compile_friendly_flex_attention(
        query,
        key,
        value,
        score_mod=score_mod,
        block_mask=block_mask,
        enable_gqa=True,
        scale=scaling,
        # Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
        # For simplification, we thus always return it as no additional computations are introduced.
        return_lse=True,
    )
    # lse is returned in float32
    attention_weights = attention_weights.to(value.dtype)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attention_weights


ALL_ATTENTION_FUNCTIONS = AttentionInterface()
ALL_ATTENTION_FUNCTIONS["doge_flex_attention"] = flex_attention_forward


class DogeAttention(nn.Module):
    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.keep_window_size = config.keep_window_size

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        # dynamic mask for the QK^T attention weights matrix
        self.A = nn.Parameter(torch.zeros(config.num_attention_heads))
        self.dt_proj = nn.Linear(
            config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # calculate dynamic mask from value_states
        dt_states = self.dt_proj(
            value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1)
        )
        dt_states = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
        attn_mask = self.prepare_dynamic_mask(
            hidden_states=hidden_states,
            dt_states=dt_states,
            keep_window_size=self.keep_window_size,
            attention_mask=attention_mask,
        )

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask=attn_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights

    def prepare_dynamic_mask(
        self,
        hidden_states: torch.Tensor,
        dt_states: torch.Tensor,
        keep_window_size: int = 2048,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        """
        The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention.

        Combine `dt_states` with `attention_mask` to generate the final `attn_mask`.

        Args:
            hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
            dt_states (`torch.Tensor`): dt_states of shape `(batch_size, num_heads, key_sequence_length)`.
            keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
            attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
        """
        min_dtype = torch.finfo(hidden_states.dtype).min
        dtype = hidden_states.dtype
        attn_mask = dt_states[:, :, None, :].expand(
            -1, -1, hidden_states.shape[1], -1
        )  # [batch_size, num_heads, query_len, key_len]
        if attention_mask is not None and not isinstance(attention_mask, BlockMask):
            if attention_mask.dtype == torch.bool:
                dtype = hidden_states.dtype
                attention_mask = torch.where(
                    attention_mask, torch.tensor(0.0, device=attention_mask.device, dtype=dtype), min_dtype
                )
            attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : attn_mask.shape[-1]] != 0, min_dtype)
        if attn_mask.shape[-1] > keep_window_size:
            active_mask = torch.zeros_like(attn_mask, dtype=dtype, device=attn_mask.device)
            topk_indices = torch.topk(attn_mask, keep_window_size, dim=-1, largest=True, sorted=False).indices
            active_mask = active_mask.scatter(-1, topk_indices, 1.0)
            attn_mask = attn_mask.masked_fill(active_mask == 0.0, min_dtype)
        return attn_mask


class DogeMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


class DogeCDMoE(nn.Module):
    def __init__(self, config: DogeConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.act_fn = ACT2FN[config.hidden_act]

        self.num_experts = config.num_experts
        self.num_keys = math.floor(math.sqrt(self.num_experts))
        self.top_k = config.num_experts_per_tok
        self.norm_topk_prob = config.norm_topk_prob

        # shared expert
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)

        # router gate for retrieval experts
        self.router_gate = nn.Linear(self.hidden_size, self.num_keys * 2, bias=False)

        # routed experts
        self.down_embed = nn.Embedding(self.num_experts, self.hidden_size)
        self.up_embed = nn.Embedding(self.num_experts, self.hidden_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        bsz, seq_len, _ = hidden_states.shape

        # get routing logits with router gate
        router_logits = self.router_gate(hidden_states).view(2, bsz * seq_len, -1)

        # get experts with the highest routing logits
        (scores_x, scores_y), (indices_x, indices_y) = router_logits.topk(self.num_keys, dim=-1)
        all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
        all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)
        all_scores = all_scores.view(*all_scores.shape[:-2], -1)
        all_indices = all_indices.view(*all_indices.shape[:-2], -1)
        scores, position_indices = all_scores.topk(self.top_k, dim=-1)
        indices = all_indices.gather(-1, position_indices)
        routing_weights = F.softmax(scores, dim=-1)
        if self.norm_topk_prob:
            routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        # mix routed experts states with shared expert states
        down_embed = self.down_embed(indices)
        up_embed = self.up_embed(indices)
        experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1)
        experts_weights = self.act_fn(experts_weights) * routing_weights
        experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1)
        hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
        hidden_states = hidden_states + experts_states
        return hidden_states, router_logits


class DogeDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.hidden_dropout = config.hidden_dropout

        self.input_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.self_attn = DogeAttention(config=config, layer_idx=layer_idx)
        self.input_residual = nn.Parameter(torch.ones(config.hidden_size))

        self.post_attention_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = DogeMLP(config) if not config.is_moe else DogeCDMoE(config)
        self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size))

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[tuple[torch.Tensor]] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
        # sequence transformation
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = self.input_residual * residual + hidden_states

        # state transformation
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = self.post_attention_residual * residual + hidden_states

        return hidden_states


@auto_docstring
class DogePreTrainedModel(PreTrainedModel):
    config: DogeConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["DogeDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = False
    _supports_sdpa = True
    _supports_flex_attn = True
    _can_compile_fullgraph = False
    _supports_attention_backend = True
    _can_record_outputs = {
        "router_logits": OutputRecorder(DogeCDMoE, index=1),
        "hidden_states": DogeDecoderLayer,
        "attentions": DogeAttention,
    }

    def _init_weights(self, module):
        """Initialize the weights"""
        super()._init_weights(module)
        if isinstance(module, DogeAttention):
            if hasattr(module, "A"):
                module.A.data.zero_()
        elif isinstance(module, DogeDecoderLayer):
            if hasattr(module, "input_residual"):
                module.input_residual.data.fill_(1.0)
            if hasattr(module, "post_attention_residual"):
                module.post_attention_residual.data.fill_(1.0)


@auto_docstring
class DogeModel(DogePreTrainedModel):
    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = DogeRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> MoeModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
        causal_mask = mask_function(
            config=self.config,
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            hidden_states = decoder_layer(
                hidden_states,
                position_embeddings=position_embeddings,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                cache_position=cache_position,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)

        return MoeModelOutputWithPast(  # only diff with Mistral is the output type, we need MoE
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
        )


def load_balancing_loss_func(
    gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
    num_experts: Optional[int] = None,
    num_keys: Optional[int] = None,
    top_k: int = 2,
    attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        gate_logits:
            Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [2, batch_size * sequence_length, num_keys].
        num_experts:
            Number of experts
        num_keys:
            Number of keys
        top_k:
            The number of experts to route per-token, can be also interpreted as the `top-k` routing
            parameter.
        attention_mask (`torch.Tensor`, *optional*):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    compute_dtype = gate_logits[0].dtype
    compute_device = gate_logits[0].device
    all_expert_indices = []
    all_routing_weights = []

    for layer_gate_logits in gate_logits:
        layer_gate_logits = layer_gate_logits.to(compute_device)

        (scores_x, scores_y), (indices_x, indices_y) = layer_gate_logits.topk(num_keys, dim=-1)

        all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
        all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2)
        all_scores = all_scores.view(*all_scores.shape[:-2], -1)
        all_indices = all_indices.view(*all_indices.shape[:-2], -1)

        _, position_indices = all_scores.topk(top_k, dim=-1)
        expert_indices = all_indices.gather(-1, position_indices)

        routing_weights = F.softmax(all_scores, dim=-1)

        all_expert_indices.append(expert_indices)
        all_routing_weights.append(routing_weights)
    all_expert_indices = torch.cat(all_expert_indices, dim=0)
    all_routing_weights = torch.cat(all_routing_weights, dim=0)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        all_expert_indices = all_expert_indices.view(-1)
        tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
        pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
        tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0]

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(all_routing_weights, dim=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = len(gate_logits)

        #  Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[None, :, :, None]
            .expand((num_hidden_layers, batch_size, sequence_length, top_k))
            .reshape(-1)
            .to(compute_device)
        )
        all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()]

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
        pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
        tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(
            expert_attention_mask
        )

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None]
            .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
            .reshape(-1, num_experts)
            .to(compute_device)
        )

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
            router_per_expert_attention_mask, dim=0
        )

    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert)
    return overall_loss * num_experts


@auto_docstring
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config):
        super().__init__(config)
        self.model = DogeModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.num_experts
        self.num_experts_per_tok = config.num_experts_per_tok

        # Initialize weights and apply final processing
        self.post_init()

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[list[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        output_router_logits: Optional[bool] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> MoeCausalLMOutputWithPast:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, DogeForCausalLM

        >>> model = DogeForCausalLM.from_pretrained("SmallDoge/Doge-320M")
        >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: MoeModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits,
                self.num_experts,
                math.floor(math.sqrt(self.num_experts)),
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)  # make sure to reside in the same device

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )


class DogeForSequenceClassification(GenericForSequenceClassification, DogePreTrainedModel):
    pass


__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]