PEER-40M / modeling_peer.py
JingzeShi's picture
Upload PEERForCausalLM
4a241da verified
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/peer/modular_peer.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_peer.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
#
# The PEER family of small language models is trained by SmallPEER Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from einops.layers.torch import Rearrange
from einops import einsum
import einx
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.integrations.flex_attention import compile_friendly_flex_attention
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import AttentionInterface, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
from transformers.utils.generic import OutputRecorder, check_model_inputs
from .configuration_peer import PEERConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
logger = logging.get_logger(__name__)
@use_kernel_forward_from_hub("RMSNorm")
class PEERRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
PEERRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class PEERRotaryEmbedding(nn.Module):
def __init__(self, config: PEERConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def flex_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Union[torch.Tensor, "BlockMask"],
scaling: Optional[float] = None,
softcap: Optional[float] = None,
head_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
block_mask = None
causal_mask = None
if isinstance(attention_mask, BlockMask):
block_mask = attention_mask
else:
causal_mask = attention_mask
if causal_mask is not None:
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
if softcap is not None:
score = softcap * torch.tanh(score / softcap)
if causal_mask is not None:
score = score + causal_mask[batch_idx][head_idx][q_idx][kv_idx]
if head_mask is not None:
score = score + head_mask[batch_idx][head_idx][0][0]
return score
attn_output, attention_weights = compile_friendly_flex_attention(
query,
key,
value,
score_mod=score_mod,
block_mask=block_mask,
enable_gqa=True,
scale=scaling,
# Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
# For simplification, we thus always return it as no additional computations are introduced.
return_lse=True,
)
# lse is returned in float32
attention_weights = attention_weights.to(value.dtype)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attention_weights
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
ALL_ATTENTION_FUNCTIONS["peer_flex_attention"] = flex_attention_forward
class PEERAttention(nn.Module):
def __init__(self, config: PEERConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.keep_window_size = config.keep_window_size
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.q_norm = PEERRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = PEERRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attn_mask = attention_mask
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask=attn_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class PEERMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class PEERCDMoE(nn.Module):
def __init__(self, config: PEERConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.act_fn = ACT2FN[config.hidden_act]
self.num_heads = config.num_peer_heads
self.num_experts = config.num_experts
self.num_keys = math.floor(math.sqrt(self.num_experts))
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
# router gate for retrieval experts
self.to_queries = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size * self.num_heads, bias = False),
Rearrange('b n (p h d) -> p b n h d', p = 2, h = self.num_heads)
)
self.keys = nn.Parameter(torch.zeros(self.num_heads, self.num_keys, 2, self.hidden_size // 2))
# routed experts
self.down_embed = nn.Embedding(self.num_experts * self.num_heads, self.hidden_size)
self.up_embed = nn.Embedding(self.num_experts * self.num_heads, self.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
queries = self.to_queries(hidden_states)
sim = einsum(queries, self.keys, 'p b n h d, h k p d -> p b n h k')
(scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_keys, dim = -1)
all_scores = einx.add('... i, ... j -> ... (i j)', scores_x, scores_y)
all_indices = einx.add('... i, ... j -> ... (i j)', indices_x * self.num_keys, indices_y)
scores, pk_indices = all_scores.topk(self.top_k, dim = -1)
indices = all_indices.gather(-1, pk_indices)
weights_down = self.down_embed(indices)
weights_up = self.up_embed(indices)
hidden_states = einsum(hidden_states, weights_down, 'b n d, b n h k d -> b n h k')
hidden_states = self.act_fn(hidden_states) * scores.softmax(dim=-1)
hidden_states = einsum(hidden_states, weights_up, 'b n h k, b n h k d -> b n d')
return hidden_states, None
class PEERDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: PEERConfig, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_dropout = config.hidden_dropout
self.input_layernorm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.self_attn = PEERAttention(config=config, layer_idx=layer_idx)
self.input_residual = nn.Parameter(torch.ones(config.hidden_size))
self.post_attention_layernorm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = PEERMLP(config) if not config.is_moe else PEERCDMoE(config)
self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size))
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
# sequence transformation
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
hidden_states = self.input_residual * residual + hidden_states
# state transformation
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if isinstance(hidden_states, tuple):
hidden_states, router_logits = hidden_states
else:
router_logits = None
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
hidden_states = self.post_attention_residual * residual + hidden_states
return hidden_states, router_logits
@auto_docstring
class PEERPreTrainedModel(PreTrainedModel):
config_class = PEERConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PEERDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = False
_supports_flash_attn_3 = False
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = False
_supports_attention_backend = True
_can_record_outputs = {
"router_logits": OutputRecorder(PEERCDMoE, index=1),
"hidden_states": PEERDecoderLayer,
"attentions": PEERAttention,
}
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, PEERRMSNorm):
module.weight.data.fill_(1.0)
if isinstance(module, PEERAttention):
if hasattr(module, "A"):
module.A.data.zero_()
elif isinstance(module, PEERDecoderLayer):
if hasattr(module, "input_residual"):
module.input_residual.data.fill_(1.0)
if hasattr(module, "post_attention_residual"):
module.post_attention_residual.data.fill_(1.0)
@auto_docstring
class PEERModel(PEERPreTrainedModel):
def __init__(self, config: PEERConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PEERDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = PEERRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
causal_mask = mask_function(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states, router_logits = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
last_hidden_state=hidden_states,
past_key_values=past_key_values,
router_logits=router_logits,
)
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
num_keys: Optional[int] = None,
top_k: int = 2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [2, batch_size * sequence_length, num_keys].
num_experts:
Number of experts
num_keys:
Number of keys
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
compute_dtype = gate_logits[0].dtype
compute_device = gate_logits[0].device
all_expert_indices = []
all_routing_weights = []
for layer_gate_logits in gate_logits:
layer_gate_logits = layer_gate_logits.to(compute_device)
(scores_x, scores_y), (indices_x, indices_y) = layer_gate_logits.topk(num_keys, dim=-1)
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
_, position_indices = all_scores.topk(top_k, dim=-1)
expert_indices = all_indices.gather(-1, position_indices)
routing_weights = F.softmax(all_scores, dim=-1)
all_expert_indices.append(expert_indices)
all_routing_weights.append(routing_weights)
all_expert_indices = torch.cat(all_expert_indices, dim=0)
all_routing_weights = torch.cat(all_routing_weights, dim=0)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
all_expert_indices = all_expert_indices.view(-1)
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0]
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(all_routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = len(gate_logits)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k))
.reshape(-1)
.to(compute_device)
)
all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()]
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(
expert_attention_mask
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert)
return overall_loss * num_experts
@auto_docstring
class PEERForCausalLM(PEERPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = PEERModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
output_router_logits: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, PEERForCausalLM
>>> model = PEERForCausalLM.from_pretrained("SmallPEER/PEER-320M")
>>> tokenizer = AutoTokenizer.from_pretrained("SmallPEER/PEER-320M")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
# if input_ids is not None:
# input_ids = torch.where(
# input_ids == torch.tensor([128256], device=input_ids.device, dtype=torch.long),
# torch.tensor([128001], device=input_ids.device, dtype=torch.long),
# input_ids
# )
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.num_experts,
math.floor(math.sqrt(self.num_experts)),
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
@auto_docstring(
custom_intro="""
The PEER Model transformer with a sequence classification head on top (linear layer).
[`PEERForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
"""
)
class PEERForSequenceClassification(PEERPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PEERModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
**kwargs,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = ["PEERForCausalLM", "PEERModel", "PEERPreTrainedModel", "PEERForSequenceClassification"]