|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import html |
|
import inspect |
|
import re |
|
import urllib.parse as ul |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from diffusers.image_processor import PixArtImageProcessor |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.schedulers import DPMSolverMultistepScheduler |
|
from diffusers.utils import ( |
|
BACKENDS_MAPPING, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
from pixcell_controlnet import PixCellControlNet |
|
from pixcell_controlnet_transformer import PixCellTransformer2DModelControlNet |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import PixCellSigmaPipeline |
|
|
|
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too. |
|
>>> pipe = PixArtSigmaPipeline.from_pretrained( |
|
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16 |
|
... ) |
|
>>> # Enable memory optimizations. |
|
>>> # pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "A small cactus with a happy face in the Sahara desert." |
|
>>> image = pipe(prompt).images[0] |
|
``` |
|
""" |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class PixCellControlNetPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for SSL-to-image generation using PixCell. |
|
""" |
|
|
|
model_cpu_offload_seq = "transformer->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
transformer: PixCellTransformer2DModelControlNet, |
|
controlnet: PixCellControlNet, |
|
scheduler: DPMSolverMultistepScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, transformer=transformer, controlnet=controlnet, scheduler=scheduler |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def get_unconditional_embedding(self, batch_size=1): |
|
|
|
uncond = self.transformer.caption_projection.uncond_embedding.clone().tile(batch_size,1,1) |
|
return uncond |
|
|
|
|
|
def check_inputs( |
|
self, |
|
height, |
|
width, |
|
callback_steps, |
|
uni_embeds=None, |
|
negative_uni_embeds=None, |
|
guidance_scale=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if uni_embeds is None: |
|
raise ValueError( |
|
"Provide a UNI embedding `uni_embeds`." |
|
) |
|
elif len(uni_embeds.shape) != 3: |
|
raise ValueError( |
|
"UNI embedding given is not in (B,N,D)." |
|
) |
|
elif uni_embeds.shape[1] != self.transformer.config.caption_num_tokens: |
|
raise ValueError( |
|
f"Number of UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})." |
|
) |
|
elif uni_embeds.shape[2] != self.transformer.config.caption_channels: |
|
raise ValueError( |
|
"UNI embedding given has incorrect dimenions." |
|
) |
|
|
|
if guidance_scale > 1.0: |
|
if negative_uni_embeds is None: |
|
raise ValueError( |
|
"Provide a negative UNI embedding `negative_uni_embeds`." |
|
) |
|
elif len(negative_uni_embeds.shape) != 3: |
|
raise ValueError( |
|
"Negative UNI embedding given is not in (B,N,D)." |
|
) |
|
elif negative_uni_embeds.shape[1] != self.transformer.config.caption_num_tokens: |
|
raise ValueError( |
|
f"Number of negative UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})." |
|
) |
|
elif negative_uni_embeds.shape[2] != self.transformer.config.caption_channels: |
|
raise ValueError( |
|
"Negative UNI embedding given has incorrect dimenions." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
num_inference_steps: int = 20, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
guidance_scale: float = 1.5, |
|
controlnet_input: Optional[torch.Tensor] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
uni_embeds: Optional[torch.Tensor] = None, |
|
negative_uni_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 4.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
controlnet_input (`torch.Tensor`, *optional*, defaults to None): |
|
The conditioning input to the ControlNet. If none is provided then the ControlNet is not used. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The width in pixels of the generated image. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
uni_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated UNI embeddings. |
|
negative_uni_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative UNI embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images |
|
""" |
|
|
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor |
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor |
|
|
|
self.check_inputs( |
|
height, |
|
width, |
|
callback_steps, |
|
uni_embeds, |
|
negative_uni_embeds, |
|
guidance_scale, |
|
) |
|
|
|
|
|
batch_size = uni_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
uni_embeds = uni_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
negative_uni_embeds = negative_uni_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
if controlnet_input is not None: |
|
controlnet_input_torch = torch.from_numpy(controlnet_input.copy()/255.).float().to(device).permute([2,0,1]).unsqueeze(0) |
|
controlnet_input_torch = 2*(controlnet_input_torch-0.5) |
|
|
|
vae_scale = self.vae.config.scaling_factor |
|
vae_shift = getattr(self.vae.config, "shift_factor", 0) |
|
controlnet_input_latent = self.vae.encode(controlnet_input_torch).latent_dist.mean |
|
controlnet_input_latent = (controlnet_input_latent-vae_shift)*vae_scale |
|
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
|
|
|
|
latent_channels = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
latent_channels, |
|
height, |
|
width, |
|
uni_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
added_cond_kwargs = {} |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latents, t) |
|
|
|
current_timestep = t |
|
if not torch.is_tensor(current_timestep): |
|
|
|
|
|
is_mps = latent_model_input.device.type == "mps" |
|
if isinstance(current_timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) |
|
elif len(current_timestep.shape) == 0: |
|
current_timestep = current_timestep[None].to(latent_model_input.device) |
|
|
|
current_timestep = current_timestep.expand(latent_model_input.shape[0]) |
|
|
|
|
|
if controlnet_input is not None: |
|
controlnet_outputs = self.controlnet( |
|
hidden_states=latent_model_input, |
|
conditioning=controlnet_input_latent, |
|
encoder_hidden_states=uni_embeds, |
|
timestep=current_timestep, |
|
|
|
return_dict=False, |
|
)[0] |
|
else: |
|
controlnet_outputs = None |
|
|
|
|
|
noise_pred_cond = self.transformer( |
|
latent_model_input, |
|
encoder_hidden_states=uni_embeds, |
|
controlnet_outputs=controlnet_outputs, |
|
timestep=current_timestep, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
|
|
|
|
|
noise_pred_uncond = self.transformer( |
|
latent_model_input, |
|
encoder_hidden_states=negative_uni_embeds, |
|
controlnet_outputs=None, |
|
timestep=current_timestep, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
else: |
|
noise_pred = noise_pred_cond |
|
|
|
|
|
|
|
if self.transformer.config.out_channels // 2 == latent_channels: |
|
noise_pred = noise_pred.chunk(2, dim=1)[0] |
|
else: |
|
noise_pred = noise_pred |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
vae_scale = self.vae.config.scaling_factor |
|
vae_shift = getattr(self.vae.config, "shift_factor", 0) |
|
|
|
image = self.vae.decode((latents / vae_scale) + vae_shift, return_dict=False)[0] |
|
|
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|