# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import html import inspect import re import urllib.parse as ul from typing import Callable, List, Optional, Tuple, Union import torch from diffusers.image_processor import PixArtImageProcessor from diffusers.models import AutoencoderKL from diffusers.schedulers import DPMSolverMultistepScheduler from diffusers.utils import ( BACKENDS_MAPPING, deprecate, logging, replace_example_docstring, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from pixcell_controlnet import PixCellControlNet from pixcell_controlnet_transformer import PixCellTransformer2DModelControlNet # TODO: # Clean up the conditioning code # Need to fix how the conditioning is provided # Maybe add UNI to the pipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import PixCellSigmaPipeline >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too. >>> pipe = PixArtSigmaPipeline.from_pretrained( ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16 ... ) >>> # Enable memory optimizations. >>> # pipe.enable_model_cpu_offload() >>> prompt = "A small cactus with a happy face in the Sahara desert." >>> image = pipe(prompt).images[0] ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class PixCellControlNetPipeline(DiffusionPipeline): r""" Pipeline for SSL-to-image generation using PixCell. """ model_cpu_offload_seq = "transformer->vae" def __init__( self, vae: AutoencoderKL, transformer: PixCellTransformer2DModelControlNet, controlnet: PixCellControlNet, scheduler: DPMSolverMultistepScheduler, ): super().__init__() self.register_modules( vae=vae, transformer=transformer, controlnet=controlnet, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def get_unconditional_embedding(self, batch_size=1): # Unconditional embedding is learned uncond = self.transformer.caption_projection.uncond_embedding.clone().tile(batch_size,1,1) return uncond # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs def check_inputs( self, height, width, callback_steps, uni_embeds=None, negative_uni_embeds=None, guidance_scale=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if uni_embeds is None: raise ValueError( "Provide a UNI embedding `uni_embeds`." ) elif len(uni_embeds.shape) != 3: raise ValueError( "UNI embedding given is not in (B,N,D)." ) elif uni_embeds.shape[1] != self.transformer.config.caption_num_tokens: raise ValueError( f"Number of UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})." ) elif uni_embeds.shape[2] != self.transformer.config.caption_channels: raise ValueError( "UNI embedding given has incorrect dimenions." ) if guidance_scale > 1.0: if negative_uni_embeds is None: raise ValueError( "Provide a negative UNI embedding `negative_uni_embeds`." ) elif len(negative_uni_embeds.shape) != 3: raise ValueError( "Negative UNI embedding given is not in (B,N,D)." ) elif negative_uni_embeds.shape[1] != self.transformer.config.caption_num_tokens: raise ValueError( f"Number of negative UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})." ) elif negative_uni_embeds.shape[2] != self.transformer.config.caption_channels: raise ValueError( "Negative UNI embedding given has incorrect dimenions." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 1.5, controlnet_input: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = None, width: Optional[int] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, uni_embeds: Optional[torch.Tensor] = None, negative_uni_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. controlnet_input (`torch.Tensor`, *optional*, defaults to None): The conditioning input to the ControlNet. If none is provided then the ControlNet is not used. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. uni_embeds (`torch.Tensor`, *optional*): Pre-generated UNI embeddings. negative_uni_embeds (`torch.Tensor`, *optional*): Pre-generated negative UNI embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor self.check_inputs( height, width, callback_steps, uni_embeds, negative_uni_embeds, guidance_scale, ) # 2. Default height and width to transformer batch_size = uni_embeds.shape[0] device = self._execution_device # 3. Handle conditioning # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # UNI uni_embeds = uni_embeds.repeat_interleave(num_images_per_prompt, dim=0) # Do not batch for CFG when using ControlNet # TODO: Change to batched inputs? if do_classifier_free_guidance: negative_uni_embeds = negative_uni_embeds.repeat_interleave(num_images_per_prompt, dim=0) # uni_embeds = torch.cat([negative_uni_embeds, uni_embeds], dim=0) # ControlNet -- image given to ControlNet is (3,256,256) if controlnet_input is not None: controlnet_input_torch = torch.from_numpy(controlnet_input.copy()/255.).float().to(device).permute([2,0,1]).unsqueeze(0) controlnet_input_torch = 2*(controlnet_input_torch-0.5) vae_scale = self.vae.config.scaling_factor vae_shift = getattr(self.vae.config, "shift_factor", 0) controlnet_input_latent = self.vae.encode(controlnet_input_torch).latent_dist.mean controlnet_input_latent = (controlnet_input_latent-vae_shift)*vae_scale # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, uni_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) added_cond_kwargs = {} # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Do not batch for CFG when using ControlNet # latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = self.scheduler.scale_model_input(latents, t) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict controlnet conditioning if controlnet_input is not None: controlnet_outputs = self.controlnet( hidden_states=latent_model_input, conditioning=controlnet_input_latent, encoder_hidden_states=uni_embeds, timestep=current_timestep, # added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] else: controlnet_outputs = None # predict noise model_output noise_pred_cond = self.transformer( latent_model_input, encoder_hidden_states=uni_embeds, controlnet_outputs=controlnet_outputs, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: # Do not batch for CFG when using ControlNet # noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred_uncond = self.transformer( latent_model_input, encoder_hidden_states=negative_uni_embeds, controlnet_outputs=None, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) else: noise_pred = noise_pred_cond # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": vae_scale = self.vae.config.scaling_factor vae_shift = getattr(self.vae.config, "shift_factor", 0) image = self.vae.decode((latents / vae_scale) + vae_shift, return_dict=False)[0] else: image = latents if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)