|
from ..utils import common_annotator_call, annotator_ckpts_path, HF_MODEL_NAME, DWPOSE_MODEL_NAME, create_node_input_types |
|
import comfy.model_management as model_management |
|
import numpy as np |
|
import warnings |
|
from controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector |
|
import os |
|
import json |
|
|
|
|
|
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider"] |
|
def check_ort_gpu(): |
|
try: |
|
import onnxruntime as ort |
|
for provider in GPU_PROVIDERS: |
|
if provider in ort.get_available_providers(): |
|
return True |
|
return False |
|
except: |
|
return False |
|
|
|
if not os.environ.get("DWPOSE_ONNXRT_CHECKED"): |
|
if check_ort_gpu(): |
|
print("DWPose: Onnxruntime with acceleration providers detected") |
|
else: |
|
warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly") |
|
os.environ['AUX_ORT_PROVIDERS'] = '' |
|
os.environ["DWPOSE_ONNXRT_CHECKED"] = '1' |
|
|
|
class DWPose_Preprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
input_types = create_node_input_types( |
|
detect_hand=(["enable", "disable"], {"default": "enable"}), |
|
detect_body=(["enable", "disable"], {"default": "enable"}), |
|
detect_face=(["enable", "disable"], {"default": "enable"}) |
|
) |
|
input_types["optional"] = { |
|
**input_types["optional"], |
|
"bbox_detector": ( |
|
["yolox_l.torchscript.pt", "yolox_m.torchscript.pt", "yolox_s.torchscript.pt", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx", "yolox_l.onnx", "yolox_m.onnx", "yolox_s.onnx"], |
|
{"default": "yolox_l.onnx"} |
|
), |
|
"pose_estimator": (["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx", "dw-mm_ucoco.onnx", "dw-ss_ucoco.onnx"], {"default": "dw-ll_ucoco_384.onnx"}) |
|
} |
|
return input_types |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "estimate_pose" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses" |
|
|
|
def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", **kwargs): |
|
if bbox_detector == "yolox_l.onnx": |
|
yolo_repo = DWPOSE_MODEL_NAME |
|
elif "yolox" in bbox_detector: |
|
yolo_repo = "hr16/yolox-onnx" |
|
elif "yolo_nas" in bbox_detector: |
|
yolo_repo = "hr16/yolo-nas-fp16" |
|
else: |
|
raise NotImplementedError(f"Download mechanism for {bbox_detector}") |
|
|
|
if pose_estimator == "dw-ll_ucoco_384.onnx": |
|
pose_repo = DWPOSE_MODEL_NAME |
|
elif pose_estimator.endswith(".onnx"): |
|
pose_repo = "hr16/UnJIT-DWPose" |
|
elif pose_estimator.endswith(".torchscript.pt"): |
|
pose_repo = "hr16/DWPose-TorchScript-BatchSize5" |
|
else: |
|
raise NotImplementedError(f"Download mechanism for {pose_estimator}") |
|
|
|
model = DwposeDetector.from_pretrained( |
|
pose_repo, |
|
yolo_repo, |
|
cache_dir=annotator_ckpts_path, det_filename=bbox_detector, pose_filename=pose_estimator, |
|
torchscript_device=model_management.get_torch_device() |
|
) |
|
detect_hand = detect_hand == "enable" |
|
detect_body = detect_body == "enable" |
|
detect_face = detect_face == "enable" |
|
self.openpose_dicts = [] |
|
def func(image, **kwargs): |
|
pose_img, openpose_dict = model(image, **kwargs) |
|
self.openpose_dicts.append(openpose_dict) |
|
return pose_img |
|
|
|
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution) |
|
del model |
|
return { |
|
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, |
|
"result": (out, ) |
|
} |
|
|
|
class AnimalPose_Preprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return create_node_input_types( |
|
bbox_detector = ( |
|
["yolox_l.torchscript.pt", "yolox_m.torchscript.pt", "yolox_s.torchscript.pt", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx", "yolox_l.onnx", "yolox_m.onnx", "yolox_s.onnx"], |
|
{"default": "yolox_l.onnx"} |
|
), |
|
pose_estimator = (["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"], {"default": "rtmpose-m_ap10k_256.onnx"}) |
|
) |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "estimate_pose" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses" |
|
|
|
def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs): |
|
if bbox_detector == "yolox_l.onnx": |
|
yolo_repo = DWPOSE_MODEL_NAME |
|
elif "yolox" in bbox_detector: |
|
yolo_repo = "hr16/yolox-onnx" |
|
elif "yolo_nas" in bbox_detector: |
|
yolo_repo = "hr16/yolo-nas-fp16" |
|
else: |
|
raise NotImplementedError(f"Download mechanism for {bbox_detector}") |
|
|
|
if pose_estimator == "dw-ll_ucoco_384.onnx": |
|
pose_repo = DWPOSE_MODEL_NAME |
|
elif pose_estimator.endswith(".onnx"): |
|
pose_repo = "hr16/UnJIT-DWPose" |
|
elif pose_estimator.endswith(".torchscript.pt"): |
|
pose_repo = "hr16/DWPose-TorchScript-BatchSize5" |
|
else: |
|
raise NotImplementedError(f"Download mechanism for {pose_estimator}") |
|
|
|
model = AnimalposeDetector.from_pretrained( |
|
pose_repo, |
|
yolo_repo, |
|
cache_dir=annotator_ckpts_path, det_filename=bbox_detector, pose_filename=pose_estimator, |
|
torchscript_device=model_management.get_torch_device() |
|
) |
|
|
|
self.openpose_dicts = [] |
|
def func(image, **kwargs): |
|
pose_img, openpose_dict = model(image, **kwargs) |
|
self.openpose_dicts.append(openpose_dict) |
|
return pose_img |
|
|
|
out = common_annotator_call(func, image, image_and_json=True, resolution=resolution) |
|
del model |
|
return { |
|
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, |
|
"result": (out, ) |
|
} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"DWPreprocessor": DWPose_Preprocessor, |
|
"AnimalPosePreprocessor": AnimalPose_Preprocessor |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"DWPreprocessor": "DWPose Estimation", |
|
"AnimalPosePreprocessor": "Animal Pose Estimation (AP10K)" |
|
} |