--- datasets: - Sweaterdog/Andy-4-base-2 - Sweaterdog/Andy-4-ft language: - en base_model: - unsloth/Qwen2.5-1.5B-Instruct-unsloth-bnb-4bit tags: - gaming - minecraft - mindcraft --- # 🤏 Andy‑4‑micro 🧠 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66960602f0ffd8e3a381106a/NFDS9XMy9YMM8KSn1Jjcd.png) **Andy‑4‑micro** is a lightweight Minecraft-tuned AI model derived from the Andy‑4 architecture. Built for responsiveness and portability, it’s ideal for local testing, light inference, and experimentation within the **Mindcraft** framework. **The current version of Andy-4-micro is `Andy-4-micro-0516`**, All previous versions of Andy-4-micro can still be found on my huggingface page. > 💡 Trained on a **single RTX 3070** over **four days**, Andy‑4‑micro maintains strong performance while staying efficient. > ⚠️ **Certification:** > Andy‑4‑micro is **not yet certified** by the Mindcraft developers. Use in production at your own discretion. --- ## 📊 Model Overview - **Base Architecture:** Qwen 2.5 - **Parameter Count:** 1.5 B - **Training Duration:** ~4 days - **Training GPU:** 1 × NVIDIA RTX 3070 - **Total Tokens Used:** ~42M - **License:** [Andy 1.1 License](LICENSE) - **Repository:** https://huggingface.co/Sweaterdog/Andy-4-micro --- ## 🚀 Installation First, you need to choose your quantization, this chart is with the base of `8192` set as the context window | Quantization | VRAM Required | |--------------|---------------| |--------------|---------------| | F16 | 5 GB | | Q8_0 | 3 GB+ | | Q5_K_M | 2 GB+ | | Q3_K_M | 1GB or CPU | **NOTE:** GPUs made before 2017 will have *significantly slower speeds* than newer GPUs, also, CPU inference will be extremely slow. ### 1. Installation directly on Ollama 1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4) 2. Copy the command after choosing model type / quantization 3. Run the command in the terminal 4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:latest` ### 2. Manual Download & Setup 1. **Download** - Visit the Hugging Face **Files** tab. - Download the `.GGUF` quantization weights (e.g. `Andy-4-micro.Q4_K_M.gguf`). - Grab the provided `Modelfile`. 2. **Edit `Modelfile`** Change the path placeholder: ```text FROM YOUR/PATH/HERE ``` to: ```text FROM /path/to/Andy-4-micro.Q4_K_M.gguf ``` *Optional*: Adjust `num_ctx` for longer context windows if your system supports it. 3. **Create Model** ```bash ollama create andy-4-micro -f Modelfile ``` This registers Andy‑4‑micro locally with Ollama. --- If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups. ## 🔧 Context‑Window Quantization To lower VRAM use for context windows: #### **Windows** 1. Close Ollama. 2. In **System Properties → Environment Variables**, add: ```text OLLAMA_FLASH_ATTENTION=1 OLLAMA_KV_CACHE_TYPE=q8_0 # or q4_0 for extra savings, but far more unstable ``` 3. Restart Ollama. #### **Linux/macOS** ```bash export OLLAMA_FLASH_ATTENTION=1 export OLLAMA_KV_CACHE_TYPE="q8_0" # or "q4_0", but far more unstable ollama serve ``` --- ## 📌 Acknowledgments
Click to expand - **Data & Model by:** @Sweaterdog - **Framework:** Mindcraft (https://github.com/kolbytn/mindcraft) - **LoRA Weights:** https://huggingface.co/Sweaterdog/Andy-4-micro-LoRA
--- ## ⚖️ License See [Andy 1.0 License](LICENSE). *This work uses data and models created by @Sweaterdog.*