Upload folder using huggingface_hub
Browse files- config.json +56 -0
 - configuration_llada.py +474 -0
 - generation_config.json +7 -0
 - model-00001-of-00004.safetensors +3 -0
 - model-00002-of-00004.safetensors +3 -0
 - model-00003-of-00004.safetensors +3 -0
 - model-00004-of-00004.safetensors +3 -0
 - model.safetensors.index.json +298 -0
 - modeling_llada.py +1642 -0
 - tokenizer.json +0 -0
 - tokenizer_config.json +2183 -0
 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,56 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "activation_type": "silu",
         
     | 
| 3 | 
         
            +
              "alibi": false,
         
     | 
| 4 | 
         
            +
              "alibi_bias_max": 8.0,
         
     | 
| 5 | 
         
            +
              "architectures": [
         
     | 
| 6 | 
         
            +
                "LLaDAModelLM"
         
     | 
| 7 | 
         
            +
              ],
         
     | 
| 8 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 9 | 
         
            +
              "attention_layer_norm": false,
         
     | 
| 10 | 
         
            +
              "attention_layer_norm_with_affine": true,
         
     | 
| 11 | 
         
            +
              "auto_map": {
         
     | 
| 12 | 
         
            +
                "AutoConfig": "configuration_llada.LLaDAConfig",
         
     | 
| 13 | 
         
            +
                "AutoModel": "modeling_llada.LLaDAModelLM",
         
     | 
| 14 | 
         
            +
                "AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
         
     | 
| 15 | 
         
            +
              },
         
     | 
| 16 | 
         
            +
              "bias_for_layer_norm": false,
         
     | 
| 17 | 
         
            +
              "block_group_size": 1,
         
     | 
| 18 | 
         
            +
              "block_type": "llama",
         
     | 
| 19 | 
         
            +
              "d_model": 4096,
         
     | 
| 20 | 
         
            +
              "embedding_dropout": 0.0,
         
     | 
| 21 | 
         
            +
              "embedding_size": 126464,
         
     | 
| 22 | 
         
            +
              "eos_token_id": 126081,
         
     | 
| 23 | 
         
            +
              "flash_attention": true,
         
     | 
| 24 | 
         
            +
              "flash_attn_varlen": true,
         
     | 
| 25 | 
         
            +
              "include_bias": false,
         
     | 
| 26 | 
         
            +
              "include_qkv_bias": false,
         
     | 
| 27 | 
         
            +
              "init_cutoff_factor": null,
         
     | 
| 28 | 
         
            +
              "init_device": "meta",
         
     | 
| 29 | 
         
            +
              "init_fn": "mitchell",
         
     | 
| 30 | 
         
            +
              "init_std": 0.02,
         
     | 
| 31 | 
         
            +
              "input_emb_norm": false,
         
     | 
| 32 | 
         
            +
              "layer_norm_type": "rms",
         
     | 
| 33 | 
         
            +
              "layer_norm_with_affine": true,
         
     | 
| 34 | 
         
            +
              "mask_token_id": 126336,
         
     | 
| 35 | 
         
            +
              "max_sequence_length": 4096,
         
     | 
| 36 | 
         
            +
              "mlp_hidden_size": 12288,
         
     | 
| 37 | 
         
            +
              "mlp_ratio": 4,
         
     | 
| 38 | 
         
            +
              "model_type": "llada",
         
     | 
| 39 | 
         
            +
              "multi_query_attention": null,
         
     | 
| 40 | 
         
            +
              "n_heads": 32,
         
     | 
| 41 | 
         
            +
              "n_kv_heads": 32,
         
     | 
| 42 | 
         
            +
              "n_layers": 32,
         
     | 
| 43 | 
         
            +
              "pad_token_id": 126081,
         
     | 
| 44 | 
         
            +
              "precision": "amp_bf16",
         
     | 
| 45 | 
         
            +
              "residual_dropout": 0.0,
         
     | 
| 46 | 
         
            +
              "rms_norm_eps": 1e-05,
         
     | 
| 47 | 
         
            +
              "rope": true,
         
     | 
| 48 | 
         
            +
              "rope_full_precision": true,
         
     | 
| 49 | 
         
            +
              "rope_theta": 500000.0,
         
     | 
| 50 | 
         
            +
              "scale_logits": false,
         
     | 
| 51 | 
         
            +
              "torch_dtype": "bfloat16",
         
     | 
| 52 | 
         
            +
              "transformers_version": "4.51.2",
         
     | 
| 53 | 
         
            +
              "use_cache": false,
         
     | 
| 54 | 
         
            +
              "vocab_size": 126464,
         
     | 
| 55 | 
         
            +
              "weight_tying": false
         
     | 
| 56 | 
         
            +
            }
         
     | 
    	
        configuration_llada.py
    ADDED
    
    | 
         @@ -0,0 +1,474 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            LLaDA configuration
         
     | 
| 3 | 
         
            +
            """
         
     | 
| 4 | 
         
            +
            from transformers import AutoConfig, PretrainedConfig
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from enum import Enum
         
     | 
| 7 | 
         
            +
            from os import PathLike
         
     | 
| 8 | 
         
            +
            from typing import Union
         
     | 
| 9 | 
         
            +
            from dataclasses import asdict, dataclass, field
         
     | 
| 10 | 
         
            +
            from glob import glob
         
     | 
| 11 | 
         
            +
            from pathlib import Path
         
     | 
| 12 | 
         
            +
            from typing import (
         
     | 
| 13 | 
         
            +
                Any,
         
     | 
| 14 | 
         
            +
                Dict,
         
     | 
| 15 | 
         
            +
                Iterable,
         
     | 
| 16 | 
         
            +
                List,
         
     | 
| 17 | 
         
            +
                Optional,
         
     | 
| 18 | 
         
            +
                Tuple,
         
     | 
| 19 | 
         
            +
                Type,
         
     | 
| 20 | 
         
            +
                TypeVar,
         
     | 
| 21 | 
         
            +
                Union,
         
     | 
| 22 | 
         
            +
                cast,
         
     | 
| 23 | 
         
            +
            )
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            __all__ = [
         
     | 
| 27 | 
         
            +
                "ActivationType",
         
     | 
| 28 | 
         
            +
                "ActivationCheckpointingStrategy",
         
     | 
| 29 | 
         
            +
                "BlockType",
         
     | 
| 30 | 
         
            +
                "LayerNormType",
         
     | 
| 31 | 
         
            +
                "InitFnType",
         
     | 
| 32 | 
         
            +
                "ModelConfig",
         
     | 
| 33 | 
         
            +
            ]
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            PathOrStr = Union[str, PathLike]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            class StrEnum(str, Enum):
         
     | 
| 39 | 
         
            +
                """
         
     | 
| 40 | 
         
            +
                This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
         
     | 
| 41 | 
         
            +
                We include this here for compatibility with older version of Python.
         
     | 
| 42 | 
         
            +
                """
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def __str__(self) -> str:
         
     | 
| 45 | 
         
            +
                    return self.value
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                def __repr__(self) -> str:
         
     | 
| 48 | 
         
            +
                    return f"'{str(self)}'"
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            class LayerNormType(StrEnum):
         
     | 
| 52 | 
         
            +
                default = "default"
         
     | 
| 53 | 
         
            +
                """
         
     | 
| 54 | 
         
            +
                The default LayerNorm implementation, equivalent to PyTorch's built-in version.
         
     | 
| 55 | 
         
            +
                """
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                low_precision = "low_precision"
         
     | 
| 58 | 
         
            +
                """
         
     | 
| 59 | 
         
            +
                A low-precision version of the default LayerNorm.
         
     | 
| 60 | 
         
            +
                """
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                rms = "rms"
         
     | 
| 63 | 
         
            +
                """
         
     | 
| 64 | 
         
            +
                An RMSNorm implementation. When using ``torch.compile`` this is
         
     | 
| 65 | 
         
            +
                probably the fastest implementation.
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                gemma_rms = "gemma_rms"
         
     | 
| 69 | 
         
            +
                """
         
     | 
| 70 | 
         
            +
                An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
         
     | 
| 71 | 
         
            +
                probably the fastest implementation.
         
     | 
| 72 | 
         
            +
                """
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                amd_compatible = "amd_compatible"
         
     | 
| 75 | 
         
            +
                """
         
     | 
| 76 | 
         
            +
                LayerNorm implemented manually to work around an issue with ROCm.
         
     | 
| 77 | 
         
            +
                """
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            class ActivationType(StrEnum):
         
     | 
| 81 | 
         
            +
                gelu = "gelu"
         
     | 
| 82 | 
         
            +
                relu = "relu"
         
     | 
| 83 | 
         
            +
                silu = "silu"
         
     | 
| 84 | 
         
            +
                swiglu = "swiglu"
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            class BlockType(StrEnum):
         
     | 
| 88 | 
         
            +
                sequential = "sequential"
         
     | 
| 89 | 
         
            +
                parallel = "parallel"
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                llama = "llama"
         
     | 
| 92 | 
         
            +
                """
         
     | 
| 93 | 
         
            +
                A block similar to the sequential block with slightly different
         
     | 
| 94 | 
         
            +
                implementations of operations like attention to imitate the behavior of Llama.
         
     | 
| 95 | 
         
            +
                """
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            class InitFnType(StrEnum):
         
     | 
| 99 | 
         
            +
                mitchell = "mitchell"
         
     | 
| 100 | 
         
            +
                """
         
     | 
| 101 | 
         
            +
                The strategy suggested to us by Mitchell Wortsman from UW.
         
     | 
| 102 | 
         
            +
                This uses a truncated normal distribution with an adaptive standard deviation that depends
         
     | 
| 103 | 
         
            +
                on the size of the weights as well as the depth of the layer.
         
     | 
| 104 | 
         
            +
                """
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                normal = "normal"
         
     | 
| 107 | 
         
            +
                """
         
     | 
| 108 | 
         
            +
                All weights are initialized from the same normal distribution.
         
     | 
| 109 | 
         
            +
                """
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                kaiming_normal = "kaiming_normal"
         
     | 
| 112 | 
         
            +
                """
         
     | 
| 113 | 
         
            +
                All weights are initialized with the Kaiming method from a normal distribution.
         
     | 
| 114 | 
         
            +
                Note this currently won't work with FSDP.
         
     | 
| 115 | 
         
            +
                """
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                fan_in = "fan_in"
         
     | 
| 118 | 
         
            +
                """
         
     | 
| 119 | 
         
            +
                "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
         
     | 
| 120 | 
         
            +
                is the input dimensionality of the kernel.
         
     | 
| 121 | 
         
            +
                """
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                full_megatron = "full_megatron"
         
     | 
| 124 | 
         
            +
                """
         
     | 
| 125 | 
         
            +
                This is what metaseq calls "full megatron init". It is the init used for Llama 2.
         
     | 
| 126 | 
         
            +
                """
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            @dataclass
         
     | 
| 130 | 
         
            +
            class ModelConfig():
         
     | 
| 131 | 
         
            +
                """
         
     | 
| 132 | 
         
            +
                LLaDA (model) configuration.
         
     | 
| 133 | 
         
            +
                """
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                # Note that the defaults for these attributes are equivalent to the base GPT2 model.
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                d_model: int = 768
         
     | 
| 138 | 
         
            +
                """
         
     | 
| 139 | 
         
            +
                The hidden size of the model.
         
     | 
| 140 | 
         
            +
                """
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                n_heads: int = 12
         
     | 
| 143 | 
         
            +
                """
         
     | 
| 144 | 
         
            +
                The number of self-attention heads.
         
     | 
| 145 | 
         
            +
                """
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                n_kv_heads: Optional[int] = None
         
     | 
| 148 | 
         
            +
                """
         
     | 
| 149 | 
         
            +
                The number of heads to use for keys and values. Defaults to `n_heads`.
         
     | 
| 150 | 
         
            +
                Set this to ``None`` or ``n_heads`` for normal multi-head attention.
         
     | 
| 151 | 
         
            +
                Set this to 1 for multi-query attention.
         
     | 
| 152 | 
         
            +
                Set it to some in-between value for Llama2-style grouped query attention.
         
     | 
| 153 | 
         
            +
                """
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                n_layers: int = 12
         
     | 
| 156 | 
         
            +
                """
         
     | 
| 157 | 
         
            +
                The number of layers/blocks.
         
     | 
| 158 | 
         
            +
                """
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                mlp_ratio: int = 4
         
     | 
| 161 | 
         
            +
                """
         
     | 
| 162 | 
         
            +
                The ratio of the inner MLP dimensionality to ``d_model``.
         
     | 
| 163 | 
         
            +
                This is only used when ``mlp_hidden_size`` is not set.
         
     | 
| 164 | 
         
            +
                """
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                mlp_hidden_size: Optional[int] = None
         
     | 
| 167 | 
         
            +
                """
         
     | 
| 168 | 
         
            +
                Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
         
     | 
| 169 | 
         
            +
                """
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                activation_type: ActivationType = ActivationType.swiglu
         
     | 
| 172 | 
         
            +
                """
         
     | 
| 173 | 
         
            +
                The activation function to use within the MLP layers.
         
     | 
| 174 | 
         
            +
                """
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                block_type: BlockType = BlockType.sequential
         
     | 
| 177 | 
         
            +
                """
         
     | 
| 178 | 
         
            +
                The transformer block implementation.
         
     | 
| 179 | 
         
            +
                """
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                block_group_size: int = 1
         
     | 
| 182 | 
         
            +
                """
         
     | 
| 183 | 
         
            +
                The number of blocks to group together into a single parent block.
         
     | 
| 184 | 
         
            +
                This has no affect on the number of parameters in the model and is only used to wrap groups
         
     | 
| 185 | 
         
            +
                of blocks together with a single FSDP wrapper during training.
         
     | 
| 186 | 
         
            +
                """
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                alibi: bool = False
         
     | 
| 189 | 
         
            +
                """
         
     | 
| 190 | 
         
            +
                If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
         
     | 
| 191 | 
         
            +
                """
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                alibi_bias_max: float = 8.0
         
     | 
| 194 | 
         
            +
                """
         
     | 
| 195 | 
         
            +
                Maximum absolute value of ALiBi bias.
         
     | 
| 196 | 
         
            +
                """
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                rope: bool = False
         
     | 
| 199 | 
         
            +
                """
         
     | 
| 200 | 
         
            +
                Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
         
     | 
| 201 | 
         
            +
                """
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                rope_full_precision: bool = True
         
     | 
| 204 | 
         
            +
                """
         
     | 
| 205 | 
         
            +
                If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
         
     | 
| 206 | 
         
            +
                apply RoPE at the precision of the input.
         
     | 
| 207 | 
         
            +
                """
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                flash_attention: bool = False
         
     | 
| 210 | 
         
            +
                """
         
     | 
| 211 | 
         
            +
                If ``True``, use ``FlashAttention``.
         
     | 
| 212 | 
         
            +
                """
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                flash_attn_varlen: bool = False
         
     | 
| 215 | 
         
            +
                """
         
     | 
| 216 | 
         
            +
                If ``True``, prioritize using ``flash_attn_varlen_func`` for variable length sequences.
         
     | 
| 217 | 
         
            +
                This requires ``flash_attention`` to be ``True``.
         
     | 
| 218 | 
         
            +
                """
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                attention_dropout: float = 0.1
         
     | 
| 221 | 
         
            +
                """
         
     | 
| 222 | 
         
            +
                The dropout probability within the attention modules.
         
     | 
| 223 | 
         
            +
                """
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                multi_query_attention: Optional[bool] = None
         
     | 
| 226 | 
         
            +
                """
         
     | 
| 227 | 
         
            +
                Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
         
     | 
| 228 | 
         
            +
                and is more efficient during inference.
         
     | 
| 229 | 
         
            +
                """
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                attention_layer_norm: bool = False
         
     | 
| 232 | 
         
            +
                """
         
     | 
| 233 | 
         
            +
                Apply layer norm to the keys and queries within the attention mechanism.
         
     | 
| 234 | 
         
            +
                This can help stabilize training.
         
     | 
| 235 | 
         
            +
                """
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                residual_dropout: float = 0.1
         
     | 
| 238 | 
         
            +
                """
         
     | 
| 239 | 
         
            +
                The dropout probability for the MLP and attention output within each block.
         
     | 
| 240 | 
         
            +
                """
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                embedding_dropout: float = 0.1
         
     | 
| 243 | 
         
            +
                """
         
     | 
| 244 | 
         
            +
                The dropout probability for embeddings.
         
     | 
| 245 | 
         
            +
                """
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                input_emb_norm: bool = False
         
     | 
| 248 | 
         
            +
                """
         
     | 
| 249 | 
         
            +
                An input hidden_states norm implementation by gemmma.
         
     | 
| 250 | 
         
            +
                """
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                layer_norm_type: LayerNormType = LayerNormType.default
         
     | 
| 253 | 
         
            +
                """
         
     | 
| 254 | 
         
            +
                The layernorm implementation to use.
         
     | 
| 255 | 
         
            +
                """
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                layer_norm_with_affine: bool = True
         
     | 
| 258 | 
         
            +
                """
         
     | 
| 259 | 
         
            +
                Whether to include bias and weight parameters for the layer norms.
         
     | 
| 260 | 
         
            +
                This only affects layer norms that are immediately followed by a linear layer in the forward pass,
         
     | 
| 261 | 
         
            +
                so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
         
     | 
| 262 | 
         
            +
                to ``False``.
         
     | 
| 263 | 
         
            +
                """
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                rms_norm_eps: float = 1e-05
         
     | 
| 266 | 
         
            +
                """
         
     | 
| 267 | 
         
            +
                The rms layernorm eps param.
         
     | 
| 268 | 
         
            +
                """
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                attention_layer_norm_with_affine: bool = True
         
     | 
| 271 | 
         
            +
                """
         
     | 
| 272 | 
         
            +
                Toggle affine transform for the QK norms.
         
     | 
| 273 | 
         
            +
                """
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                max_sequence_length: int = 1024
         
     | 
| 276 | 
         
            +
                """
         
     | 
| 277 | 
         
            +
                The maximum input sequence length supported by the model.
         
     | 
| 278 | 
         
            +
                """
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                rope_theta: float = 10000.0
         
     | 
| 281 | 
         
            +
                """
         
     | 
| 282 | 
         
            +
                The rope base param.
         
     | 
| 283 | 
         
            +
                """
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                include_qkv_bias: Optional[bool] = False
         
     | 
| 286 | 
         
            +
                """
         
     | 
| 287 | 
         
            +
                Whether or not to include bias parameters in qkv linear layers.
         
     | 
| 288 | 
         
            +
                """
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                include_bias: bool = False
         
     | 
| 291 | 
         
            +
                """
         
     | 
| 292 | 
         
            +
                Whether or not to include bias parameters in linear layers.
         
     | 
| 293 | 
         
            +
                In PaLM, they got rid of all bias terms because they found that large
         
     | 
| 294 | 
         
            +
                models tend to have near 0 bias terms anyway.
         
     | 
| 295 | 
         
            +
                """
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                bias_for_layer_norm: Optional[bool] = None
         
     | 
| 298 | 
         
            +
                """
         
     | 
| 299 | 
         
            +
                Whether or not to include bias parameters in layer norm.
         
     | 
| 300 | 
         
            +
                This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
         
     | 
| 301 | 
         
            +
                layer norm.
         
     | 
| 302 | 
         
            +
                When this is None (the default), it inherits the setting from include_bias.
         
     | 
| 303 | 
         
            +
                """
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                scale_logits: bool = False
         
     | 
| 306 | 
         
            +
                """
         
     | 
| 307 | 
         
            +
                If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
         
     | 
| 308 | 
         
            +
                """
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                vocab_size: int = 50257
         
     | 
| 311 | 
         
            +
                """
         
     | 
| 312 | 
         
            +
                Vocabulary size of the model.
         
     | 
| 313 | 
         
            +
                """
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                embedding_size: Optional[int] = 50304
         
     | 
| 316 | 
         
            +
                """
         
     | 
| 317 | 
         
            +
                The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
         
     | 
| 318 | 
         
            +
                to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
         
     | 
| 319 | 
         
            +
                next multiple of 128 that's greater than ``vocab_size`` can improve throughput
         
     | 
| 320 | 
         
            +
                substantially.
         
     | 
| 321 | 
         
            +
                """
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                weight_tying: bool = True
         
     | 
| 324 | 
         
            +
                """
         
     | 
| 325 | 
         
            +
                Whether to tie output linear weights to the input embedding.
         
     | 
| 326 | 
         
            +
                """
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                eos_token_id: int = 50256
         
     | 
| 329 | 
         
            +
                """
         
     | 
| 330 | 
         
            +
                The ID of the end-of-sentence special token.
         
     | 
| 331 | 
         
            +
                """
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                pad_token_id: int = 50256
         
     | 
| 334 | 
         
            +
                """
         
     | 
| 335 | 
         
            +
                The ID of the token to use for padding. Defaults to the ID of the EOS token.
         
     | 
| 336 | 
         
            +
                """
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                mask_token_id: Optional[int] = 50256
         
     | 
| 339 | 
         
            +
                """
         
     | 
| 340 | 
         
            +
                The ID of the token to use for mask token. Defaults to the ID of the EOS token.
         
     | 
| 341 | 
         
            +
                """
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                init_device: Optional[str] = None
         
     | 
| 344 | 
         
            +
                """
         
     | 
| 345 | 
         
            +
                The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
         
     | 
| 346 | 
         
            +
                """
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                init_fn: InitFnType = InitFnType.normal
         
     | 
| 349 | 
         
            +
                """
         
     | 
| 350 | 
         
            +
                The weight initialization strategy.
         
     | 
| 351 | 
         
            +
                """
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                init_std: float = 0.02
         
     | 
| 354 | 
         
            +
                """
         
     | 
| 355 | 
         
            +
                The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
         
     | 
| 356 | 
         
            +
                as "normal".
         
     | 
| 357 | 
         
            +
                """
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                init_cutoff_factor: Optional[float] = None
         
     | 
| 360 | 
         
            +
                """
         
     | 
| 361 | 
         
            +
                A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
         
     | 
| 362 | 
         
            +
                as "normal". Setting this to None means values are not cutoff.
         
     | 
| 363 | 
         
            +
                """
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                precision: Optional[str] = None
         
     | 
| 366 | 
         
            +
                """
         
     | 
| 367 | 
         
            +
                Precision used to train/evaluate with. You shouldn't set this directly.
         
     | 
| 368 | 
         
            +
                See :data:`TrainConfig.precision` instead.
         
     | 
| 369 | 
         
            +
                """
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                @property
         
     | 
| 372 | 
         
            +
                def effective_n_kv_heads(self) -> int:
         
     | 
| 373 | 
         
            +
                    if self.n_kv_heads is None:
         
     | 
| 374 | 
         
            +
                        if self.multi_query_attention is True:
         
     | 
| 375 | 
         
            +
                            return 1
         
     | 
| 376 | 
         
            +
                        else:
         
     | 
| 377 | 
         
            +
                            return self.n_heads
         
     | 
| 378 | 
         
            +
                    else:
         
     | 
| 379 | 
         
            +
                        if self.multi_query_attention is None:
         
     | 
| 380 | 
         
            +
                            return self.n_kv_heads
         
     | 
| 381 | 
         
            +
                        if self.multi_query_attention:
         
     | 
| 382 | 
         
            +
                            n_kv_heads_should_be = 1
         
     | 
| 383 | 
         
            +
                        else:
         
     | 
| 384 | 
         
            +
                            n_kv_heads_should_be = self.n_heads
         
     | 
| 385 | 
         
            +
                        if self.n_kv_heads == n_kv_heads_should_be:
         
     | 
| 386 | 
         
            +
                            return n_kv_heads_should_be
         
     | 
| 387 | 
         
            +
                        else:
         
     | 
| 388 | 
         
            +
                            raise Exception(
         
     | 
| 389 | 
         
            +
                                "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
         
     | 
| 390 | 
         
            +
                            )
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
            class ActivationCheckpointingStrategy(StrEnum):
         
     | 
| 393 | 
         
            +
                whole_layer = "whole_layer"
         
     | 
| 394 | 
         
            +
                """
         
     | 
| 395 | 
         
            +
                Checkpoint every transformer layer.
         
     | 
| 396 | 
         
            +
                """
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                one_in_two = "one_in_two"
         
     | 
| 399 | 
         
            +
                """
         
     | 
| 400 | 
         
            +
                Checkpoint one in two transformer layers.
         
     | 
| 401 | 
         
            +
                """
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                one_in_three = "one_in_three"
         
     | 
| 404 | 
         
            +
                """
         
     | 
| 405 | 
         
            +
                Checkpoint one in three transformer layers.
         
     | 
| 406 | 
         
            +
                """
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                one_in_four = "one_in_four"
         
     | 
| 409 | 
         
            +
                """
         
     | 
| 410 | 
         
            +
                Checkpoint one in four transformer layers.
         
     | 
| 411 | 
         
            +
                """
         
     | 
| 412 | 
         
            +
                
         
     | 
| 413 | 
         
            +
                two_in_three = "two_in_three"
         
     | 
| 414 | 
         
            +
                """
         
     | 
| 415 | 
         
            +
                Checkpoint two out of every three transformer layers.
         
     | 
| 416 | 
         
            +
                """
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                three_in_four = "three_in_four"
         
     | 
| 419 | 
         
            +
                """
         
     | 
| 420 | 
         
            +
                Checkpoint three out of four of every transformer layers.
         
     | 
| 421 | 
         
            +
                """
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                four_in_five = "four_in_five"
         
     | 
| 424 | 
         
            +
                """
         
     | 
| 425 | 
         
            +
                Checkpoint four out of five of every transformer layers.
         
     | 
| 426 | 
         
            +
                """
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                nine_in_ten = "nine_in_ten"
         
     | 
| 429 | 
         
            +
                """
         
     | 
| 430 | 
         
            +
                Checkpoint nine out of ten of every transformer layers.
         
     | 
| 431 | 
         
            +
                """
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                fine_grained = "fine_grained"
         
     | 
| 434 | 
         
            +
                """
         
     | 
| 435 | 
         
            +
                Focus checkpointing on where it is cheap to recompute and saves most memory.
         
     | 
| 436 | 
         
            +
                """
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
            class LLaDAConfig(PretrainedConfig):
         
     | 
| 440 | 
         
            +
                model_type = "llada"
         
     | 
| 441 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]  # TODO: confirm
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                def __init__(self, use_cache: bool = False, **kwargs):
         
     | 
| 444 | 
         
            +
                    model_config = ModelConfig()
         
     | 
| 445 | 
         
            +
                    all_kwargs = model_config.__dict__
         
     | 
| 446 | 
         
            +
                    all_kwargs.update(kwargs)
         
     | 
| 447 | 
         
            +
                    all_kwargs.update({"use_cache": use_cache})
         
     | 
| 448 | 
         
            +
                    all_kwargs.update(
         
     | 
| 449 | 
         
            +
                        {
         
     | 
| 450 | 
         
            +
                            "architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
         
     | 
| 451 | 
         
            +
                        }
         
     | 
| 452 | 
         
            +
                    )
         
     | 
| 453 | 
         
            +
                    super().__init__(**all_kwargs)
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                @property
         
     | 
| 456 | 
         
            +
                def num_attention_heads(self):
         
     | 
| 457 | 
         
            +
                    return self.n_heads
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                @property
         
     | 
| 460 | 
         
            +
                def num_hidden_layers(self):
         
     | 
| 461 | 
         
            +
                    return self.n_layers
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                @property
         
     | 
| 464 | 
         
            +
                def hidden_size(self):
         
     | 
| 465 | 
         
            +
                    return self.d_model
         
     | 
| 466 | 
         
            +
                
         
     | 
| 467 | 
         
            +
                @property
         
     | 
| 468 | 
         
            +
                def num_key_value_heads(self):
         
     | 
| 469 | 
         
            +
                    # 优先用 n_kv_heads,如果没有就 fallback 到 n_heads
         
     | 
| 470 | 
         
            +
                    return getattr(self, "n_kv_heads", self.n_heads)
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
            # Register the config class so that it is available for transformer pipelines, auto-loading etc.
         
     | 
| 474 | 
         
            +
            AutoConfig.register("llada", LLaDAConfig)
         
     | 
    	
        generation_config.json
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_from_model_config": true,
         
     | 
| 3 | 
         
            +
              "eos_token_id": 126081,
         
     | 
| 4 | 
         
            +
              "pad_token_id": 126081,
         
     | 
| 5 | 
         
            +
              "transformers_version": "4.51.2",
         
     | 
| 6 | 
         
            +
              "use_cache": false
         
     | 
| 7 | 
         
            +
            }
         
     | 
    	
        model-00001-of-00004.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:30010120baede5b534c9d9909640b28890cfdf317070498e1aecf3463c91ba48
         
     | 
| 3 | 
         
            +
            size 4999810528
         
     | 
    	
        model-00002-of-00004.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3c3d10ad25cff9bb488e1b8ba530036195b9d6c5339cad9925cff35ec21d44b7
         
     | 
| 3 | 
         
            +
            size 4932702104
         
     | 
    	
        model-00003-of-00004.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:5ddaebbabcfc06f88865c07d1a478f5015b9b295434f7671350c58908d1a2cfa
         
     | 
| 3 | 
         
            +
            size 4991360808
         
     | 
    	
        model-00004-of-00004.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:4ff0607c79f68d0dffc79cd0fd39d17b3a71e123b73651cfb823deeabe9cf710
         
     | 
| 3 | 
         
            +
            size 1107323704
         
     | 
    	
        model.safetensors.index.json
    ADDED
    
    | 
         @@ -0,0 +1,298 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "metadata": {
         
     | 
| 3 | 
         
            +
                "total_size": 16031162368
         
     | 
| 4 | 
         
            +
              },
         
     | 
| 5 | 
         
            +
              "weight_map": {
         
     | 
| 6 | 
         
            +
                "model.transformer.blocks.0.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 7 | 
         
            +
                "model.transformer.blocks.0.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 8 | 
         
            +
                "model.transformer.blocks.0.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 9 | 
         
            +
                "model.transformer.blocks.0.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 10 | 
         
            +
                "model.transformer.blocks.0.ff_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 11 | 
         
            +
                "model.transformer.blocks.0.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 12 | 
         
            +
                "model.transformer.blocks.0.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 13 | 
         
            +
                "model.transformer.blocks.0.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 14 | 
         
            +
                "model.transformer.blocks.0.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 15 | 
         
            +
                "model.transformer.blocks.1.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 16 | 
         
            +
                "model.transformer.blocks.1.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 17 | 
         
            +
                "model.transformer.blocks.1.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 18 | 
         
            +
                "model.transformer.blocks.1.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 19 | 
         
            +
                "model.transformer.blocks.1.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 20 | 
         
            +
                "model.transformer.blocks.1.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 21 | 
         
            +
                "model.transformer.blocks.1.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 22 | 
         
            +
                "model.transformer.blocks.1.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 23 | 
         
            +
                "model.transformer.blocks.1.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 24 | 
         
            +
                "model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 25 | 
         
            +
                "model.transformer.blocks.10.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 26 | 
         
            +
                "model.transformer.blocks.10.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 27 | 
         
            +
                "model.transformer.blocks.10.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 28 | 
         
            +
                "model.transformer.blocks.10.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 29 | 
         
            +
                "model.transformer.blocks.10.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 30 | 
         
            +
                "model.transformer.blocks.10.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 31 | 
         
            +
                "model.transformer.blocks.10.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 32 | 
         
            +
                "model.transformer.blocks.10.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 33 | 
         
            +
                "model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 34 | 
         
            +
                "model.transformer.blocks.11.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 35 | 
         
            +
                "model.transformer.blocks.11.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 36 | 
         
            +
                "model.transformer.blocks.11.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 37 | 
         
            +
                "model.transformer.blocks.11.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 38 | 
         
            +
                "model.transformer.blocks.11.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 39 | 
         
            +
                "model.transformer.blocks.11.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 40 | 
         
            +
                "model.transformer.blocks.11.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 41 | 
         
            +
                "model.transformer.blocks.11.v_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 42 | 
         
            +
                "model.transformer.blocks.12.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 43 | 
         
            +
                "model.transformer.blocks.12.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 44 | 
         
            +
                "model.transformer.blocks.12.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 45 | 
         
            +
                "model.transformer.blocks.12.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 46 | 
         
            +
                "model.transformer.blocks.12.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 47 | 
         
            +
                "model.transformer.blocks.12.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 48 | 
         
            +
                "model.transformer.blocks.12.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 49 | 
         
            +
                "model.transformer.blocks.12.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 50 | 
         
            +
                "model.transformer.blocks.12.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 51 | 
         
            +
                "model.transformer.blocks.13.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 52 | 
         
            +
                "model.transformer.blocks.13.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 53 | 
         
            +
                "model.transformer.blocks.13.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 54 | 
         
            +
                "model.transformer.blocks.13.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 55 | 
         
            +
                "model.transformer.blocks.13.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 56 | 
         
            +
                "model.transformer.blocks.13.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 57 | 
         
            +
                "model.transformer.blocks.13.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 58 | 
         
            +
                "model.transformer.blocks.13.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 59 | 
         
            +
                "model.transformer.blocks.13.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 60 | 
         
            +
                "model.transformer.blocks.14.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 61 | 
         
            +
                "model.transformer.blocks.14.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 62 | 
         
            +
                "model.transformer.blocks.14.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 63 | 
         
            +
                "model.transformer.blocks.14.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 64 | 
         
            +
                "model.transformer.blocks.14.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 65 | 
         
            +
                "model.transformer.blocks.14.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 66 | 
         
            +
                "model.transformer.blocks.14.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 67 | 
         
            +
                "model.transformer.blocks.14.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 68 | 
         
            +
                "model.transformer.blocks.14.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 69 | 
         
            +
                "model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 70 | 
         
            +
                "model.transformer.blocks.15.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 71 | 
         
            +
                "model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 72 | 
         
            +
                "model.transformer.blocks.15.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 73 | 
         
            +
                "model.transformer.blocks.15.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 74 | 
         
            +
                "model.transformer.blocks.15.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 75 | 
         
            +
                "model.transformer.blocks.15.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 76 | 
         
            +
                "model.transformer.blocks.15.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 77 | 
         
            +
                "model.transformer.blocks.15.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 78 | 
         
            +
                "model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 79 | 
         
            +
                "model.transformer.blocks.16.attn_out.weight": "model-00004-of-00004.safetensors",
         
     | 
| 80 | 
         
            +
                "model.transformer.blocks.16.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 81 | 
         
            +
                "model.transformer.blocks.16.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 82 | 
         
            +
                "model.transformer.blocks.16.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 83 | 
         
            +
                "model.transformer.blocks.16.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 84 | 
         
            +
                "model.transformer.blocks.16.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 85 | 
         
            +
                "model.transformer.blocks.16.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 86 | 
         
            +
                "model.transformer.blocks.16.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 87 | 
         
            +
                "model.transformer.blocks.17.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 88 | 
         
            +
                "model.transformer.blocks.17.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 89 | 
         
            +
                "model.transformer.blocks.17.ff_norm.weight": "model-00004-of-00004.safetensors",
         
     | 
| 90 | 
         
            +
                "model.transformer.blocks.17.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 91 | 
         
            +
                "model.transformer.blocks.17.ff_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 92 | 
         
            +
                "model.transformer.blocks.17.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 93 | 
         
            +
                "model.transformer.blocks.17.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 94 | 
         
            +
                "model.transformer.blocks.17.up_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 95 | 
         
            +
                "model.transformer.blocks.17.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 96 | 
         
            +
                "model.transformer.blocks.18.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 97 | 
         
            +
                "model.transformer.blocks.18.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 98 | 
         
            +
                "model.transformer.blocks.18.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 99 | 
         
            +
                "model.transformer.blocks.18.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 100 | 
         
            +
                "model.transformer.blocks.18.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 101 | 
         
            +
                "model.transformer.blocks.18.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 102 | 
         
            +
                "model.transformer.blocks.18.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 103 | 
         
            +
                "model.transformer.blocks.18.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 104 | 
         
            +
                "model.transformer.blocks.18.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 105 | 
         
            +
                "model.transformer.blocks.19.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 106 | 
         
            +
                "model.transformer.blocks.19.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 107 | 
         
            +
                "model.transformer.blocks.19.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 108 | 
         
            +
                "model.transformer.blocks.19.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 109 | 
         
            +
                "model.transformer.blocks.19.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 110 | 
         
            +
                "model.transformer.blocks.19.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 111 | 
         
            +
                "model.transformer.blocks.19.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 112 | 
         
            +
                "model.transformer.blocks.19.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 113 | 
         
            +
                "model.transformer.blocks.19.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 114 | 
         
            +
                "model.transformer.blocks.2.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 115 | 
         
            +
                "model.transformer.blocks.2.attn_out.weight": "model-00004-of-00004.safetensors",
         
     | 
| 116 | 
         
            +
                "model.transformer.blocks.2.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 117 | 
         
            +
                "model.transformer.blocks.2.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 118 | 
         
            +
                "model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 119 | 
         
            +
                "model.transformer.blocks.2.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 120 | 
         
            +
                "model.transformer.blocks.2.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 121 | 
         
            +
                "model.transformer.blocks.2.up_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 122 | 
         
            +
                "model.transformer.blocks.2.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 123 | 
         
            +
                "model.transformer.blocks.20.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 124 | 
         
            +
                "model.transformer.blocks.20.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 125 | 
         
            +
                "model.transformer.blocks.20.ff_norm.weight": "model-00004-of-00004.safetensors",
         
     | 
| 126 | 
         
            +
                "model.transformer.blocks.20.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 127 | 
         
            +
                "model.transformer.blocks.20.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 128 | 
         
            +
                "model.transformer.blocks.20.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 129 | 
         
            +
                "model.transformer.blocks.20.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 130 | 
         
            +
                "model.transformer.blocks.20.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 131 | 
         
            +
                "model.transformer.blocks.20.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 132 | 
         
            +
                "model.transformer.blocks.21.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 133 | 
         
            +
                "model.transformer.blocks.21.attn_out.weight": "model-00004-of-00004.safetensors",
         
     | 
| 134 | 
         
            +
                "model.transformer.blocks.21.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 135 | 
         
            +
                "model.transformer.blocks.21.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 136 | 
         
            +
                "model.transformer.blocks.21.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 137 | 
         
            +
                "model.transformer.blocks.21.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 138 | 
         
            +
                "model.transformer.blocks.21.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 139 | 
         
            +
                "model.transformer.blocks.21.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 140 | 
         
            +
                "model.transformer.blocks.21.v_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 141 | 
         
            +
                "model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 142 | 
         
            +
                "model.transformer.blocks.22.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 143 | 
         
            +
                "model.transformer.blocks.22.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 144 | 
         
            +
                "model.transformer.blocks.22.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 145 | 
         
            +
                "model.transformer.blocks.22.ff_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 146 | 
         
            +
                "model.transformer.blocks.22.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 147 | 
         
            +
                "model.transformer.blocks.22.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 148 | 
         
            +
                "model.transformer.blocks.22.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 149 | 
         
            +
                "model.transformer.blocks.22.v_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 150 | 
         
            +
                "model.transformer.blocks.23.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 151 | 
         
            +
                "model.transformer.blocks.23.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 152 | 
         
            +
                "model.transformer.blocks.23.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 153 | 
         
            +
                "model.transformer.blocks.23.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 154 | 
         
            +
                "model.transformer.blocks.23.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 155 | 
         
            +
                "model.transformer.blocks.23.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 156 | 
         
            +
                "model.transformer.blocks.23.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 157 | 
         
            +
                "model.transformer.blocks.23.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 158 | 
         
            +
                "model.transformer.blocks.23.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 159 | 
         
            +
                "model.transformer.blocks.24.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 160 | 
         
            +
                "model.transformer.blocks.24.attn_out.weight": "model-00004-of-00004.safetensors",
         
     | 
| 161 | 
         
            +
                "model.transformer.blocks.24.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 162 | 
         
            +
                "model.transformer.blocks.24.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 163 | 
         
            +
                "model.transformer.blocks.24.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 164 | 
         
            +
                "model.transformer.blocks.24.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 165 | 
         
            +
                "model.transformer.blocks.24.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 166 | 
         
            +
                "model.transformer.blocks.24.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 167 | 
         
            +
                "model.transformer.blocks.24.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 168 | 
         
            +
                "model.transformer.blocks.25.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 169 | 
         
            +
                "model.transformer.blocks.25.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 170 | 
         
            +
                "model.transformer.blocks.25.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 171 | 
         
            +
                "model.transformer.blocks.25.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 172 | 
         
            +
                "model.transformer.blocks.25.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 173 | 
         
            +
                "model.transformer.blocks.25.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 174 | 
         
            +
                "model.transformer.blocks.25.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 175 | 
         
            +
                "model.transformer.blocks.25.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 176 | 
         
            +
                "model.transformer.blocks.25.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 177 | 
         
            +
                "model.transformer.blocks.26.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 178 | 
         
            +
                "model.transformer.blocks.26.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 179 | 
         
            +
                "model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 180 | 
         
            +
                "model.transformer.blocks.26.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 181 | 
         
            +
                "model.transformer.blocks.26.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 182 | 
         
            +
                "model.transformer.blocks.26.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 183 | 
         
            +
                "model.transformer.blocks.26.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 184 | 
         
            +
                "model.transformer.blocks.26.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 185 | 
         
            +
                "model.transformer.blocks.26.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 186 | 
         
            +
                "model.transformer.blocks.27.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 187 | 
         
            +
                "model.transformer.blocks.27.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 188 | 
         
            +
                "model.transformer.blocks.27.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 189 | 
         
            +
                "model.transformer.blocks.27.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 190 | 
         
            +
                "model.transformer.blocks.27.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 191 | 
         
            +
                "model.transformer.blocks.27.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 192 | 
         
            +
                "model.transformer.blocks.27.q_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 193 | 
         
            +
                "model.transformer.blocks.27.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 194 | 
         
            +
                "model.transformer.blocks.27.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 195 | 
         
            +
                "model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 196 | 
         
            +
                "model.transformer.blocks.28.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 197 | 
         
            +
                "model.transformer.blocks.28.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 198 | 
         
            +
                "model.transformer.blocks.28.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 199 | 
         
            +
                "model.transformer.blocks.28.ff_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 200 | 
         
            +
                "model.transformer.blocks.28.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 201 | 
         
            +
                "model.transformer.blocks.28.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 202 | 
         
            +
                "model.transformer.blocks.28.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 203 | 
         
            +
                "model.transformer.blocks.28.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 204 | 
         
            +
                "model.transformer.blocks.29.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 205 | 
         
            +
                "model.transformer.blocks.29.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 206 | 
         
            +
                "model.transformer.blocks.29.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 207 | 
         
            +
                "model.transformer.blocks.29.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 208 | 
         
            +
                "model.transformer.blocks.29.ff_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 209 | 
         
            +
                "model.transformer.blocks.29.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 210 | 
         
            +
                "model.transformer.blocks.29.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 211 | 
         
            +
                "model.transformer.blocks.29.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 212 | 
         
            +
                "model.transformer.blocks.29.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 213 | 
         
            +
                "model.transformer.blocks.3.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 214 | 
         
            +
                "model.transformer.blocks.3.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 215 | 
         
            +
                "model.transformer.blocks.3.ff_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 216 | 
         
            +
                "model.transformer.blocks.3.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 217 | 
         
            +
                "model.transformer.blocks.3.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 218 | 
         
            +
                "model.transformer.blocks.3.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 219 | 
         
            +
                "model.transformer.blocks.3.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 220 | 
         
            +
                "model.transformer.blocks.3.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 221 | 
         
            +
                "model.transformer.blocks.3.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 222 | 
         
            +
                "model.transformer.blocks.30.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 223 | 
         
            +
                "model.transformer.blocks.30.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 224 | 
         
            +
                "model.transformer.blocks.30.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 225 | 
         
            +
                "model.transformer.blocks.30.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 226 | 
         
            +
                "model.transformer.blocks.30.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 227 | 
         
            +
                "model.transformer.blocks.30.k_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 228 | 
         
            +
                "model.transformer.blocks.30.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 229 | 
         
            +
                "model.transformer.blocks.30.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 230 | 
         
            +
                "model.transformer.blocks.30.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 231 | 
         
            +
                "model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 232 | 
         
            +
                "model.transformer.blocks.31.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 233 | 
         
            +
                "model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 234 | 
         
            +
                "model.transformer.blocks.31.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 235 | 
         
            +
                "model.transformer.blocks.31.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 236 | 
         
            +
                "model.transformer.blocks.31.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 237 | 
         
            +
                "model.transformer.blocks.31.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 238 | 
         
            +
                "model.transformer.blocks.31.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 239 | 
         
            +
                "model.transformer.blocks.31.v_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 240 | 
         
            +
                "model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 241 | 
         
            +
                "model.transformer.blocks.4.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 242 | 
         
            +
                "model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 243 | 
         
            +
                "model.transformer.blocks.4.ff_out.weight": "model-00004-of-00004.safetensors",
         
     | 
| 244 | 
         
            +
                "model.transformer.blocks.4.ff_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 245 | 
         
            +
                "model.transformer.blocks.4.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 246 | 
         
            +
                "model.transformer.blocks.4.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 247 | 
         
            +
                "model.transformer.blocks.4.up_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 248 | 
         
            +
                "model.transformer.blocks.4.v_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 249 | 
         
            +
                "model.transformer.blocks.5.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 250 | 
         
            +
                "model.transformer.blocks.5.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 251 | 
         
            +
                "model.transformer.blocks.5.ff_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 252 | 
         
            +
                "model.transformer.blocks.5.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 253 | 
         
            +
                "model.transformer.blocks.5.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 254 | 
         
            +
                "model.transformer.blocks.5.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 255 | 
         
            +
                "model.transformer.blocks.5.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 256 | 
         
            +
                "model.transformer.blocks.5.up_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 257 | 
         
            +
                "model.transformer.blocks.5.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 258 | 
         
            +
                "model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 259 | 
         
            +
                "model.transformer.blocks.6.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 260 | 
         
            +
                "model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 261 | 
         
            +
                "model.transformer.blocks.6.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 262 | 
         
            +
                "model.transformer.blocks.6.ff_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 263 | 
         
            +
                "model.transformer.blocks.6.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 264 | 
         
            +
                "model.transformer.blocks.6.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 265 | 
         
            +
                "model.transformer.blocks.6.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 266 | 
         
            +
                "model.transformer.blocks.6.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 267 | 
         
            +
                "model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 268 | 
         
            +
                "model.transformer.blocks.7.attn_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 269 | 
         
            +
                "model.transformer.blocks.7.ff_norm.weight": "model-00004-of-00004.safetensors",
         
     | 
| 270 | 
         
            +
                "model.transformer.blocks.7.ff_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 271 | 
         
            +
                "model.transformer.blocks.7.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 272 | 
         
            +
                "model.transformer.blocks.7.k_proj.weight": "model-00004-of-00004.safetensors",
         
     | 
| 273 | 
         
            +
                "model.transformer.blocks.7.q_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 274 | 
         
            +
                "model.transformer.blocks.7.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 275 | 
         
            +
                "model.transformer.blocks.7.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 276 | 
         
            +
                "model.transformer.blocks.8.attn_norm.weight": "model-00003-of-00004.safetensors",
         
     | 
| 277 | 
         
            +
                "model.transformer.blocks.8.attn_out.weight": "model-00001-of-00004.safetensors",
         
     | 
| 278 | 
         
            +
                "model.transformer.blocks.8.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 279 | 
         
            +
                "model.transformer.blocks.8.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 280 | 
         
            +
                "model.transformer.blocks.8.ff_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 281 | 
         
            +
                "model.transformer.blocks.8.k_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 282 | 
         
            +
                "model.transformer.blocks.8.q_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 283 | 
         
            +
                "model.transformer.blocks.8.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 284 | 
         
            +
                "model.transformer.blocks.8.v_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 285 | 
         
            +
                "model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
         
     | 
| 286 | 
         
            +
                "model.transformer.blocks.9.attn_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 287 | 
         
            +
                "model.transformer.blocks.9.ff_norm.weight": "model-00001-of-00004.safetensors",
         
     | 
| 288 | 
         
            +
                "model.transformer.blocks.9.ff_out.weight": "model-00002-of-00004.safetensors",
         
     | 
| 289 | 
         
            +
                "model.transformer.blocks.9.ff_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 290 | 
         
            +
                "model.transformer.blocks.9.k_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 291 | 
         
            +
                "model.transformer.blocks.9.q_proj.weight": "model-00002-of-00004.safetensors",
         
     | 
| 292 | 
         
            +
                "model.transformer.blocks.9.up_proj.weight": "model-00001-of-00004.safetensors",
         
     | 
| 293 | 
         
            +
                "model.transformer.blocks.9.v_proj.weight": "model-00003-of-00004.safetensors",
         
     | 
| 294 | 
         
            +
                "model.transformer.ff_out.weight": "model-00003-of-00004.safetensors",
         
     | 
| 295 | 
         
            +
                "model.transformer.ln_f.weight": "model-00002-of-00004.safetensors",
         
     | 
| 296 | 
         
            +
                "model.transformer.wte.weight": "model-00003-of-00004.safetensors"
         
     | 
| 297 | 
         
            +
              }
         
     | 
| 298 | 
         
            +
            }
         
     | 
    	
        modeling_llada.py
    ADDED
    
    | 
         @@ -0,0 +1,1642 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from __future__ import annotations
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import logging
         
     | 
| 4 | 
         
            +
            import math
         
     | 
| 5 | 
         
            +
            import sys
         
     | 
| 6 | 
         
            +
            from abc import abstractmethod
         
     | 
| 7 | 
         
            +
            from collections import defaultdict
         
     | 
| 8 | 
         
            +
            from functools import partial
         
     | 
| 9 | 
         
            +
            from typing import (
         
     | 
| 10 | 
         
            +
                Callable,
         
     | 
| 11 | 
         
            +
                Dict,
         
     | 
| 12 | 
         
            +
                Iterable,
         
     | 
| 13 | 
         
            +
                List,
         
     | 
| 14 | 
         
            +
                NamedTuple,
         
     | 
| 15 | 
         
            +
                Optional,
         
     | 
| 16 | 
         
            +
                Sequence,
         
     | 
| 17 | 
         
            +
                Set,
         
     | 
| 18 | 
         
            +
                Tuple,
         
     | 
| 19 | 
         
            +
                cast,
         
     | 
| 20 | 
         
            +
            )
         
     | 
| 21 | 
         
            +
            from dataclasses import fields
         
     | 
| 22 | 
         
            +
            from typing import List, Optional, Tuple, Union
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            import torch
         
     | 
| 25 | 
         
            +
            import torch.backends.cuda
         
     | 
| 26 | 
         
            +
            import torch.nn as nn
         
     | 
| 27 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 28 | 
         
            +
            from torch import einsum
         
     | 
| 29 | 
         
            +
            from transformers import PreTrainedModel
         
     | 
| 30 | 
         
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         
     | 
| 31 | 
         
            +
            from transformers.models.auto import AutoModel
         
     | 
| 32 | 
         
            +
            from transformers.cache_utils import Cache
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            from .configuration_llada import (
         
     | 
| 35 | 
         
            +
                LLaDAConfig,
         
     | 
| 36 | 
         
            +
                StrEnum,
         
     | 
| 37 | 
         
            +
                InitFnType,
         
     | 
| 38 | 
         
            +
                ActivationType,
         
     | 
| 39 | 
         
            +
                BlockType,
         
     | 
| 40 | 
         
            +
                LayerNormType,
         
     | 
| 41 | 
         
            +
                ModelConfig,
         
     | 
| 42 | 
         
            +
                ActivationCheckpointingStrategy,
         
     | 
| 43 | 
         
            +
            )
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            if sys.version_info.minor > 8:
         
     | 
| 46 | 
         
            +
                from collections.abc import MutableMapping
         
     | 
| 47 | 
         
            +
            elif sys.version_info.minor == 8:
         
     | 
| 48 | 
         
            +
                from typing import MutableMapping
         
     | 
| 49 | 
         
            +
            else:
         
     | 
| 50 | 
         
            +
                raise SystemExit("This script supports Python 3.8 or higher")
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            __all__ = [
         
     | 
| 53 | 
         
            +
                "LayerNormBase",
         
     | 
| 54 | 
         
            +
                "LayerNorm",
         
     | 
| 55 | 
         
            +
                "RMSLayerNorm",
         
     | 
| 56 | 
         
            +
                "GemmaRMSLayerNorm",
         
     | 
| 57 | 
         
            +
                "RotaryEmbedding",
         
     | 
| 58 | 
         
            +
                "Activation",
         
     | 
| 59 | 
         
            +
                "GELU",
         
     | 
| 60 | 
         
            +
                "ReLU",
         
     | 
| 61 | 
         
            +
                "SwiGLU",
         
     | 
| 62 | 
         
            +
                "LLaDABlock",
         
     | 
| 63 | 
         
            +
                "LLaDASequentialBlock",
         
     | 
| 64 | 
         
            +
                "LLaDAModel",
         
     | 
| 65 | 
         
            +
                "LLaDAOutput",
         
     | 
| 66 | 
         
            +
                "LLaDAGenerateOutput",
         
     | 
| 67 | 
         
            +
            ]
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            log = logging.getLogger(__name__)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            class ModuleType(StrEnum):
         
     | 
| 74 | 
         
            +
                in_module = "in"
         
     | 
| 75 | 
         
            +
                out_module = "out"
         
     | 
| 76 | 
         
            +
                emb = "emb"
         
     | 
| 77 | 
         
            +
                final_out = "final_out"
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            def init_weights(
         
     | 
| 81 | 
         
            +
                config: ModelConfig,
         
     | 
| 82 | 
         
            +
                module: Union[nn.Linear, nn.Embedding],
         
     | 
| 83 | 
         
            +
                d: Optional[int] = None,
         
     | 
| 84 | 
         
            +
                layer_id: Optional[int] = None,
         
     | 
| 85 | 
         
            +
                std_factor: float = 1.0,
         
     | 
| 86 | 
         
            +
                type_of_module: Optional[ModuleType] = None,
         
     | 
| 87 | 
         
            +
            ) -> None:
         
     | 
| 88 | 
         
            +
                """
         
     | 
| 89 | 
         
            +
                Initialize weights of a linear or embedding module.
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                :param config: The model config.
         
     | 
| 92 | 
         
            +
                :param module: The linear or embedding submodule to initialize.
         
     | 
| 93 | 
         
            +
                :param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
         
     | 
| 94 | 
         
            +
                    for fused layers.
         
     | 
| 95 | 
         
            +
                :param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
         
     | 
| 96 | 
         
            +
                    ``1 / sqrt(2 * (layer_id + 1))``.
         
     | 
| 97 | 
         
            +
                """
         
     | 
| 98 | 
         
            +
                d = d if d is not None else config.d_model
         
     | 
| 99 | 
         
            +
                if config.init_fn == InitFnType.normal:
         
     | 
| 100 | 
         
            +
                    std = config.init_std * std_factor
         
     | 
| 101 | 
         
            +
                    if config.init_cutoff_factor is not None:
         
     | 
| 102 | 
         
            +
                        cutoff_value = config.init_cutoff_factor * std
         
     | 
| 103 | 
         
            +
                        nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
         
     | 
| 104 | 
         
            +
                    else:
         
     | 
| 105 | 
         
            +
                        nn.init.normal_(module.weight, mean=0.0, std=std)
         
     | 
| 106 | 
         
            +
                elif config.init_fn == InitFnType.mitchell:
         
     | 
| 107 | 
         
            +
                    std = std_factor / math.sqrt(d)
         
     | 
| 108 | 
         
            +
                    if layer_id is not None:
         
     | 
| 109 | 
         
            +
                        std = std / math.sqrt(2 * (layer_id + 1))
         
     | 
| 110 | 
         
            +
                    nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
         
     | 
| 111 | 
         
            +
                elif config.init_fn == InitFnType.kaiming_normal:
         
     | 
| 112 | 
         
            +
                    nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
         
     | 
| 113 | 
         
            +
                elif config.init_fn == InitFnType.fan_in:
         
     | 
| 114 | 
         
            +
                    std = std_factor / math.sqrt(d)
         
     | 
| 115 | 
         
            +
                    nn.init.normal_(module.weight, mean=0.0, std=std)
         
     | 
| 116 | 
         
            +
                elif config.init_fn == InitFnType.full_megatron:
         
     | 
| 117 | 
         
            +
                    if type_of_module is None:
         
     | 
| 118 | 
         
            +
                        raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    cutoff_factor = config.init_cutoff_factor
         
     | 
| 121 | 
         
            +
                    if cutoff_factor is None:
         
     | 
| 122 | 
         
            +
                        cutoff_factor = 3
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    if type_of_module == ModuleType.in_module:
         
     | 
| 125 | 
         
            +
                        # for att_proj (same as QKV), ff_proj
         
     | 
| 126 | 
         
            +
                        std = config.init_std
         
     | 
| 127 | 
         
            +
                    elif type_of_module == ModuleType.out_module:
         
     | 
| 128 | 
         
            +
                        # for attn_out, ff_out
         
     | 
| 129 | 
         
            +
                        std = config.init_std / math.sqrt(2.0 * config.n_layers)
         
     | 
| 130 | 
         
            +
                    elif type_of_module == ModuleType.emb:
         
     | 
| 131 | 
         
            +
                        # positional embeddings (wpe)
         
     | 
| 132 | 
         
            +
                        # token embeddings (wte)
         
     | 
| 133 | 
         
            +
                        std = config.init_std
         
     | 
| 134 | 
         
            +
                    elif type_of_module == ModuleType.final_out:
         
     | 
| 135 | 
         
            +
                        # final output (ff_out)
         
     | 
| 136 | 
         
            +
                        std = config.d_model**-0.5
         
     | 
| 137 | 
         
            +
                    else:
         
     | 
| 138 | 
         
            +
                        raise RuntimeError(f"Unknown module type '{type_of_module}'")
         
     | 
| 139 | 
         
            +
                    nn.init.trunc_normal_(
         
     | 
| 140 | 
         
            +
                        module.weight,
         
     | 
| 141 | 
         
            +
                        mean=0.0,
         
     | 
| 142 | 
         
            +
                        std=std,
         
     | 
| 143 | 
         
            +
                        a=-cutoff_factor * std,
         
     | 
| 144 | 
         
            +
                        b=cutoff_factor * std,
         
     | 
| 145 | 
         
            +
                    )
         
     | 
| 146 | 
         
            +
                else:
         
     | 
| 147 | 
         
            +
                    raise NotImplementedError(config.init_fn)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                if isinstance(module, nn.Linear):
         
     | 
| 150 | 
         
            +
                    if module.bias is not None:
         
     | 
| 151 | 
         
            +
                        nn.init.zeros_(module.bias)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
         
     | 
| 154 | 
         
            +
                        with torch.no_grad():
         
     | 
| 155 | 
         
            +
                            module.weight.div_(math.sqrt(2 * config.n_layers))
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
         
     | 
| 159 | 
         
            +
                """
         
     | 
| 160 | 
         
            +
                Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
         
     | 
| 161 | 
         
            +
                is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
         
     | 
| 162 | 
         
            +
                """
         
     | 
| 163 | 
         
            +
                if check_neg_inf:
         
     | 
| 164 | 
         
            +
                    x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
         
     | 
| 165 | 
         
            +
                if check_pos_inf:
         
     | 
| 166 | 
         
            +
                    x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            def activation_checkpoint_function(cfg: ModelConfig):
         
     | 
| 170 | 
         
            +
                preserve_rng_state = (
         
     | 
| 171 | 
         
            +
                    (cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
         
     | 
| 172 | 
         
            +
                )
         
     | 
| 173 | 
         
            +
                from torch.utils.checkpoint import checkpoint
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                return partial(
         
     | 
| 176 | 
         
            +
                    checkpoint,
         
     | 
| 177 | 
         
            +
                    preserve_rng_state=preserve_rng_state,
         
     | 
| 178 | 
         
            +
                    use_reentrant=False,
         
     | 
| 179 | 
         
            +
                )
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
            class BufferCache(dict, MutableMapping[str, torch.Tensor]):
         
     | 
| 183 | 
         
            +
                """
         
     | 
| 184 | 
         
            +
                Cache for attention biases and other things that would normally be stored as buffers.
         
     | 
| 185 | 
         
            +
                We avoid using buffers because we've run into various issues doing so with FSDP.
         
     | 
| 186 | 
         
            +
                In general it appears the way FSDP handles buffers is not well-defined.
         
     | 
| 187 | 
         
            +
                It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
         
     | 
| 188 | 
         
            +
                since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
         
     | 
| 189 | 
         
            +
                NaNs when they're synchronized due to casting or some other issue.
         
     | 
| 190 | 
         
            +
                """
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
            def _non_meta_init_device(config: ModelConfig) -> torch.device:
         
     | 
| 194 | 
         
            +
                if config.init_device is not None and config.init_device != "meta":
         
     | 
| 195 | 
         
            +
                    return torch.device(config.init_device)
         
     | 
| 196 | 
         
            +
                else:
         
     | 
| 197 | 
         
            +
                    return torch.device("cuda" if torch.cuda.is_available() else "cpu")
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            class Dropout(nn.Dropout):
         
     | 
| 201 | 
         
            +
                def forward(self, input: torch.Tensor) -> torch.Tensor:
         
     | 
| 202 | 
         
            +
                    if self.p == 0.0:
         
     | 
| 203 | 
         
            +
                        return input
         
     | 
| 204 | 
         
            +
                    else:
         
     | 
| 205 | 
         
            +
                        return F.dropout(input, self.p, self.training, self.inplace)
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
            class LayerNormBase(nn.Module):
         
     | 
| 209 | 
         
            +
                def __init__(
         
     | 
| 210 | 
         
            +
                    self,
         
     | 
| 211 | 
         
            +
                    config: ModelConfig,
         
     | 
| 212 | 
         
            +
                    *,
         
     | 
| 213 | 
         
            +
                    size: Optional[int] = None,
         
     | 
| 214 | 
         
            +
                    elementwise_affine: Optional[bool] = True,
         
     | 
| 215 | 
         
            +
                    eps: float = 1e-05,
         
     | 
| 216 | 
         
            +
                ):
         
     | 
| 217 | 
         
            +
                    super().__init__()
         
     | 
| 218 | 
         
            +
                    self.config = config
         
     | 
| 219 | 
         
            +
                    self.eps = eps
         
     | 
| 220 | 
         
            +
                    self.normalized_shape = (size or config.d_model,)
         
     | 
| 221 | 
         
            +
                    if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
         
     | 
| 222 | 
         
            +
                        self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
         
     | 
| 223 | 
         
            +
                        use_bias = self.config.bias_for_layer_norm
         
     | 
| 224 | 
         
            +
                        if use_bias is None:
         
     | 
| 225 | 
         
            +
                            use_bias = self.config.include_bias
         
     | 
| 226 | 
         
            +
                        if use_bias:
         
     | 
| 227 | 
         
            +
                            self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
         
     | 
| 228 | 
         
            +
                        else:
         
     | 
| 229 | 
         
            +
                            self.register_parameter("bias", None)
         
     | 
| 230 | 
         
            +
                    else:
         
     | 
| 231 | 
         
            +
                        self.register_parameter("bias", None)
         
     | 
| 232 | 
         
            +
                        self.register_parameter("weight", None)
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                @abstractmethod
         
     | 
| 235 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 236 | 
         
            +
                    raise NotImplementedError
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                @classmethod
         
     | 
| 239 | 
         
            +
                def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
         
     | 
| 240 | 
         
            +
                    if config.layer_norm_type == LayerNormType.default:
         
     | 
| 241 | 
         
            +
                        return LayerNorm(config, size=size, low_precision=False, **kwargs)
         
     | 
| 242 | 
         
            +
                    elif config.layer_norm_type == LayerNormType.low_precision:
         
     | 
| 243 | 
         
            +
                        return LayerNorm(config, size=size, low_precision=True, **kwargs)
         
     | 
| 244 | 
         
            +
                    elif config.layer_norm_type == LayerNormType.rms:
         
     | 
| 245 | 
         
            +
                        return RMSLayerNorm(config, size=size, **kwargs)
         
     | 
| 246 | 
         
            +
                    elif config.layer_norm_type == LayerNormType.gemma_rms:
         
     | 
| 247 | 
         
            +
                        return GemmaRMSLayerNorm(config, size=size, **kwargs)
         
     | 
| 248 | 
         
            +
                    else:
         
     | 
| 249 | 
         
            +
                        raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
         
     | 
| 252 | 
         
            +
                    # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
         
     | 
| 253 | 
         
            +
                    # `is_autocast_cpu_enabled()` for CPU autocast.
         
     | 
| 254 | 
         
            +
                    # See https://github.com/pytorch/pytorch/issues/110966.
         
     | 
| 255 | 
         
            +
                    if tensor.device.type == "cuda" and torch.is_autocast_enabled():
         
     | 
| 256 | 
         
            +
                        return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
         
     | 
| 257 | 
         
            +
                    elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
         
     | 
| 258 | 
         
            +
                        return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
         
     | 
| 259 | 
         
            +
                    else:
         
     | 
| 260 | 
         
            +
                        return tensor
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                def reset_parameters(self):
         
     | 
| 263 | 
         
            +
                    if self.weight is not None:
         
     | 
| 264 | 
         
            +
                        torch.nn.init.ones_(self.weight)  # type: ignore
         
     | 
| 265 | 
         
            +
                    if self.bias is not None:
         
     | 
| 266 | 
         
            +
                        torch.nn.init.zeros_(self.bias)  # type: ignore
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
            class LayerNorm(LayerNormBase):
         
     | 
| 270 | 
         
            +
                """
         
     | 
| 271 | 
         
            +
                The default :class:`LayerNorm` implementation which can optionally run in low precision.
         
     | 
| 272 | 
         
            +
                """
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                def __init__(
         
     | 
| 275 | 
         
            +
                    self,
         
     | 
| 276 | 
         
            +
                    config: ModelConfig,
         
     | 
| 277 | 
         
            +
                    size: Optional[int] = None,
         
     | 
| 278 | 
         
            +
                    low_precision: bool = False,
         
     | 
| 279 | 
         
            +
                    elementwise_affine: Optional[bool] = None,
         
     | 
| 280 | 
         
            +
                    eps: float = 1e-05,
         
     | 
| 281 | 
         
            +
                ):
         
     | 
| 282 | 
         
            +
                    super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
         
     | 
| 283 | 
         
            +
                    self.low_precision = low_precision
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 286 | 
         
            +
                    if self.low_precision:
         
     | 
| 287 | 
         
            +
                        module_device = x.device
         
     | 
| 288 | 
         
            +
                        downcast_x = self._cast_if_autocast_enabled(x)
         
     | 
| 289 | 
         
            +
                        downcast_weight = (
         
     | 
| 290 | 
         
            +
                            self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
         
     | 
| 291 | 
         
            +
                        )
         
     | 
| 292 | 
         
            +
                        downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
         
     | 
| 293 | 
         
            +
                        with torch.autocast(enabled=False, device_type=module_device.type):
         
     | 
| 294 | 
         
            +
                            return F.layer_norm(
         
     | 
| 295 | 
         
            +
                                downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
         
     | 
| 296 | 
         
            +
                            )
         
     | 
| 297 | 
         
            +
                    else:
         
     | 
| 298 | 
         
            +
                        return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
            class RMSLayerNorm(LayerNormBase):
         
     | 
| 302 | 
         
            +
                """
         
     | 
| 303 | 
         
            +
                RMS layer norm, a simplified :class:`LayerNorm` implementation
         
     | 
| 304 | 
         
            +
                """
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                def __init__(
         
     | 
| 307 | 
         
            +
                    self,
         
     | 
| 308 | 
         
            +
                    config: ModelConfig,
         
     | 
| 309 | 
         
            +
                    size: Optional[int] = None,
         
     | 
| 310 | 
         
            +
                    elementwise_affine: Optional[bool] = None,
         
     | 
| 311 | 
         
            +
                    eps: float = 1e-5,
         
     | 
| 312 | 
         
            +
                ):
         
     | 
| 313 | 
         
            +
                    super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 316 | 
         
            +
                    with torch.autocast(enabled=False, device_type=x.device.type):
         
     | 
| 317 | 
         
            +
                        og_dtype = x.dtype
         
     | 
| 318 | 
         
            +
                        x = x.to(torch.float32)
         
     | 
| 319 | 
         
            +
                        variance = x.pow(2).mean(-1, keepdim=True)
         
     | 
| 320 | 
         
            +
                        x = x * torch.rsqrt(variance + self.eps)
         
     | 
| 321 | 
         
            +
                        x = x.to(og_dtype)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    if self.weight is not None:
         
     | 
| 324 | 
         
            +
                        if self.bias is not None:
         
     | 
| 325 | 
         
            +
                            return self.weight * x + self.bias
         
     | 
| 326 | 
         
            +
                        else:
         
     | 
| 327 | 
         
            +
                            return self.weight * x
         
     | 
| 328 | 
         
            +
                    else:
         
     | 
| 329 | 
         
            +
                        return x
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
            class GemmaRMSLayerNorm(LayerNormBase):
         
     | 
| 333 | 
         
            +
                """
         
     | 
| 334 | 
         
            +
                Gemma RMS layer norm, a simplified :class:`LayerNorm` implementation
         
     | 
| 335 | 
         
            +
                """
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                def __init__(
         
     | 
| 338 | 
         
            +
                    self,
         
     | 
| 339 | 
         
            +
                    config: ModelConfig,
         
     | 
| 340 | 
         
            +
                    size: Optional[int] = None,
         
     | 
| 341 | 
         
            +
                    elementwise_affine: Optional[bool] = None,
         
     | 
| 342 | 
         
            +
                    eps: float = 1e-5,
         
     | 
| 343 | 
         
            +
                ):
         
     | 
| 344 | 
         
            +
                    super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 347 | 
         
            +
                    with torch.autocast(enabled=False, device_type=x.device.type):
         
     | 
| 348 | 
         
            +
                        og_dtype = x.dtype
         
     | 
| 349 | 
         
            +
                        x = x.to(torch.float32)
         
     | 
| 350 | 
         
            +
                        variance = x.pow(2).mean(-1, keepdim=True)
         
     | 
| 351 | 
         
            +
                        x = x * torch.rsqrt(variance + self.eps)
         
     | 
| 352 | 
         
            +
                        x = x.to(og_dtype)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    if self.weight is not None:
         
     | 
| 355 | 
         
            +
                        if self.bias is not None:
         
     | 
| 356 | 
         
            +
                            return x * (1 + self.weight) + self.bias
         
     | 
| 357 | 
         
            +
                        else:
         
     | 
| 358 | 
         
            +
                            return x * (1 + self.weight)
         
     | 
| 359 | 
         
            +
                    else:
         
     | 
| 360 | 
         
            +
                        return x
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
            class RotaryEmbedding(nn.Module):
         
     | 
| 364 | 
         
            +
                """
         
     | 
| 365 | 
         
            +
                [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
         
     | 
| 366 | 
         
            +
                """
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                def __init__(self, config: ModelConfig, cache: BufferCache):
         
     | 
| 369 | 
         
            +
                    super().__init__()
         
     | 
| 370 | 
         
            +
                    self.config = config
         
     | 
| 371 | 
         
            +
                    self.__cache = cache
         
     | 
| 372 | 
         
            +
                    # Warm up cache.
         
     | 
| 373 | 
         
            +
                    self.rope_theta = config.rope_theta
         
     | 
| 374 | 
         
            +
                    self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 377 | 
         
            +
                    if (
         
     | 
| 378 | 
         
            +
                        (pos_sin := self.__cache.get("rope_pos_sin")) is not None
         
     | 
| 379 | 
         
            +
                        and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
         
     | 
| 380 | 
         
            +
                        and pos_sin.shape[-2] >= seq_len
         
     | 
| 381 | 
         
            +
                        and pos_cos.shape[-2] >= seq_len
         
     | 
| 382 | 
         
            +
                    ):
         
     | 
| 383 | 
         
            +
                        if pos_sin.device != device:
         
     | 
| 384 | 
         
            +
                            pos_sin = pos_sin.to(device)
         
     | 
| 385 | 
         
            +
                            self.__cache["rope_pos_sin"] = pos_sin
         
     | 
| 386 | 
         
            +
                        if pos_cos.device != device:
         
     | 
| 387 | 
         
            +
                            pos_cos = pos_cos.to(device)
         
     | 
| 388 | 
         
            +
                            self.__cache["rope_pos_cos"] = pos_cos
         
     | 
| 389 | 
         
            +
                        return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                    with torch.autocast(device.type, enabled=False):
         
     | 
| 392 | 
         
            +
                        dim = self.config.d_model // self.config.n_heads
         
     | 
| 393 | 
         
            +
                        inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
         
     | 
| 394 | 
         
            +
                        seq = torch.arange(seq_len, device=device, dtype=torch.float)
         
     | 
| 395 | 
         
            +
                        freqs = einsum("i , j -> i j", seq, inv_freq)
         
     | 
| 396 | 
         
            +
                        positions = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 397 | 
         
            +
                        pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
         
     | 
| 398 | 
         
            +
                    self.__cache["rope_pos_sin"] = pos_sin
         
     | 
| 399 | 
         
            +
                    self.__cache["rope_pos_cos"] = pos_cos
         
     | 
| 400 | 
         
            +
                    return pos_sin, pos_cos
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 403 | 
         
            +
                    B, nh, T, hs = x.size()
         
     | 
| 404 | 
         
            +
                    x = x.view(B, nh, T, 2, hs // 2)
         
     | 
| 405 | 
         
            +
                    x1, x2 = x.unbind(dim=-2)
         
     | 
| 406 | 
         
            +
                    return torch.cat((-x2, x1), dim=-1)
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
         
     | 
| 409 | 
         
            +
                    return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 412 | 
         
            +
                    if self.config.rope_full_precision:
         
     | 
| 413 | 
         
            +
                        q_, k_ = q.float(), k.float()
         
     | 
| 414 | 
         
            +
                    else:
         
     | 
| 415 | 
         
            +
                        q_, k_ = q, k
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                    with torch.autocast(q.device.type, enabled=False):
         
     | 
| 418 | 
         
            +
                        query_len, key_len = q_.shape[-2], k_.shape[-2]  # could be different if layer_past not None
         
     | 
| 419 | 
         
            +
                        pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
         
     | 
| 420 | 
         
            +
                        pos_sin = pos_sin.type_as(q_)
         
     | 
| 421 | 
         
            +
                        pos_cos = pos_cos.type_as(q_)
         
     | 
| 422 | 
         
            +
                        q_ = self.apply_rotary_pos_emb(
         
     | 
| 423 | 
         
            +
                            pos_sin[:, :, key_len - query_len : key_len, :],
         
     | 
| 424 | 
         
            +
                            pos_cos[:, :, key_len - query_len : key_len, :],
         
     | 
| 425 | 
         
            +
                            q_,
         
     | 
| 426 | 
         
            +
                        )
         
     | 
| 427 | 
         
            +
                        k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
         
     | 
| 428 | 
         
            +
                    return q_.type_as(q), k_.type_as(k)
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
            class Activation(nn.Module):
         
     | 
| 432 | 
         
            +
                def __init__(self, config: ModelConfig):
         
     | 
| 433 | 
         
            +
                    super().__init__()
         
     | 
| 434 | 
         
            +
                    self.config = config
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                @abstractmethod
         
     | 
| 437 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 438 | 
         
            +
                    raise NotImplementedError
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                @property
         
     | 
| 441 | 
         
            +
                @abstractmethod
         
     | 
| 442 | 
         
            +
                def output_multiplier(self) -> float:
         
     | 
| 443 | 
         
            +
                    raise NotImplementedError
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                @classmethod
         
     | 
| 446 | 
         
            +
                def build(cls, config: ModelConfig) -> Activation:
         
     | 
| 447 | 
         
            +
                    if config.activation_type == ActivationType.gelu:
         
     | 
| 448 | 
         
            +
                        return cast(Activation, GELU(approximate="none"))
         
     | 
| 449 | 
         
            +
                    elif config.activation_type == ActivationType.relu:
         
     | 
| 450 | 
         
            +
                        return cast(Activation, ReLU(inplace=False))
         
     | 
| 451 | 
         
            +
                    elif config.activation_type == ActivationType.silu:
         
     | 
| 452 | 
         
            +
                        return cast(Activation, SiLU(inplace=False))
         
     | 
| 453 | 
         
            +
                    elif config.activation_type == ActivationType.swiglu:
         
     | 
| 454 | 
         
            +
                        return SwiGLU(config)
         
     | 
| 455 | 
         
            +
                    else:
         
     | 
| 456 | 
         
            +
                        raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
            class GELU(nn.GELU):
         
     | 
| 460 | 
         
            +
                @property
         
     | 
| 461 | 
         
            +
                def output_multiplier(self) -> float:
         
     | 
| 462 | 
         
            +
                    return 1.0
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
            class ReLU(nn.ReLU):
         
     | 
| 466 | 
         
            +
                @property
         
     | 
| 467 | 
         
            +
                def output_multiplier(self) -> float:
         
     | 
| 468 | 
         
            +
                    return 1.0
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
            class SiLU(nn.SiLU):
         
     | 
| 471 | 
         
            +
                @property
         
     | 
| 472 | 
         
            +
                def output_multiplier(self) -> float:
         
     | 
| 473 | 
         
            +
                    return 1.0
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
            class SwiGLU(Activation):
         
     | 
| 476 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 477 | 
         
            +
                    x, gate = x.chunk(2, dim=-1)
         
     | 
| 478 | 
         
            +
                    return F.silu(gate) * x
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                @property
         
     | 
| 481 | 
         
            +
                def output_multiplier(self) -> float:
         
     | 
| 482 | 
         
            +
                    return 0.5
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
            def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
         
     | 
| 486 | 
         
            +
                att_bias = torch.triu(
         
     | 
| 487 | 
         
            +
                    torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
         
     | 
| 488 | 
         
            +
                    diagonal=1,
         
     | 
| 489 | 
         
            +
                )
         
     | 
| 490 | 
         
            +
                att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
         
     | 
| 491 | 
         
            +
                return att_bias.view(1, 1, seq_len, seq_len)  # type: ignore
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
            def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
         
     | 
| 495 | 
         
            +
                if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
         
     | 
| 496 | 
         
            +
                    if causal_bias.device != device:
         
     | 
| 497 | 
         
            +
                        causal_bias = causal_bias.to(device)
         
     | 
| 498 | 
         
            +
                        cache["causal_attention_bias"] = causal_bias
         
     | 
| 499 | 
         
            +
                    return causal_bias
         
     | 
| 500 | 
         
            +
                with torch.autocast(device.type, enabled=False):
         
     | 
| 501 | 
         
            +
                    causal_bias = causal_attention_bias(seq_len, device)
         
     | 
| 502 | 
         
            +
                cache["causal_attention_bias"] = causal_bias
         
     | 
| 503 | 
         
            +
                return causal_bias
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
            def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
         
     | 
| 507 | 
         
            +
                alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                # shape: (1, 1, seq_len, seq_len)
         
     | 
| 510 | 
         
            +
                alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
         
     | 
| 511 | 
         
            +
                alibi_bias.abs_().mul_(-1)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                # shape: (n_heads,)
         
     | 
| 514 | 
         
            +
                m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
         
     | 
| 515 | 
         
            +
                m.mul_(config.alibi_bias_max / config.n_heads)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                # shape: (1, n_heads, seq_len, seq_len)
         
     | 
| 518 | 
         
            +
                return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1)))  # type: ignore
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
            class LLaDABlock(nn.Module):
         
     | 
| 522 | 
         
            +
                """
         
     | 
| 523 | 
         
            +
                A base class for transformer block implementations.
         
     | 
| 524 | 
         
            +
                """
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
         
     | 
| 527 | 
         
            +
                    super().__init__()
         
     | 
| 528 | 
         
            +
                    self.layer_id = layer_id
         
     | 
| 529 | 
         
            +
                    self.config = config
         
     | 
| 530 | 
         
            +
                    self.hidden_size = (
         
     | 
| 531 | 
         
            +
                        config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
         
     | 
| 532 | 
         
            +
                    )
         
     | 
| 533 | 
         
            +
                    self.__cache = cache
         
     | 
| 534 | 
         
            +
                    assert config.d_model % config.n_heads == 0
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
                    self._activation_checkpoint_fn = None
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                    # Dropout.
         
     | 
| 539 | 
         
            +
                    self.dropout = Dropout(config.residual_dropout)
         
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
                    # Layer norms.
         
     | 
| 542 | 
         
            +
                    self.k_norm: Optional[LayerNormBase] = None
         
     | 
| 543 | 
         
            +
                    self.q_norm: Optional[LayerNormBase] = None
         
     | 
| 544 | 
         
            +
                    if config.attention_layer_norm:
         
     | 
| 545 | 
         
            +
                        self.k_norm = LayerNormBase.build(
         
     | 
| 546 | 
         
            +
                            config,
         
     | 
| 547 | 
         
            +
                            size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
         
     | 
| 548 | 
         
            +
                            elementwise_affine=config.attention_layer_norm_with_affine,
         
     | 
| 549 | 
         
            +
                        )
         
     | 
| 550 | 
         
            +
                        self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    # Activation function.
         
     | 
| 553 | 
         
            +
                    self.act = Activation.build(config)
         
     | 
| 554 | 
         
            +
                    assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                    # Attention output projection.
         
     | 
| 557 | 
         
            +
                    self.attn_out = nn.Linear(
         
     | 
| 558 | 
         
            +
                        config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
         
     | 
| 559 | 
         
            +
                    )
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    # Feed-forward output projection.
         
     | 
| 562 | 
         
            +
                    self.ff_out = nn.Linear(
         
     | 
| 563 | 
         
            +
                        int(self.act.output_multiplier * self.hidden_size),
         
     | 
| 564 | 
         
            +
                        config.d_model,
         
     | 
| 565 | 
         
            +
                        bias=config.include_bias,
         
     | 
| 566 | 
         
            +
                        device=config.init_device,
         
     | 
| 567 | 
         
            +
                    )
         
     | 
| 568 | 
         
            +
                    self.ff_out._is_residual = True  # type: ignore
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                    # Rotary embeddings.
         
     | 
| 571 | 
         
            +
                    if self.config.rope:
         
     | 
| 572 | 
         
            +
                        self.rotary_emb = RotaryEmbedding(config, self.__cache)
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    self.flash_attn_func = None
         
     | 
| 575 | 
         
            +
                    self.flash_attn_varlen_func = None
         
     | 
| 576 | 
         
            +
                    if config.flash_attention:
         
     | 
| 577 | 
         
            +
                        try:
         
     | 
| 578 | 
         
            +
                            from flash_attn import flash_attn_func, flash_attn_varlen_func  # type: ignore
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                            self.flash_attn_func = flash_attn_func
         
     | 
| 581 | 
         
            +
                            self.flash_attn_varlen_func = flash_attn_varlen_func
         
     | 
| 582 | 
         
            +
                        except ModuleNotFoundError:
         
     | 
| 583 | 
         
            +
                            pass
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                def reset_parameters(self):
         
     | 
| 586 | 
         
            +
                    if self.k_norm is not None:
         
     | 
| 587 | 
         
            +
                        self.k_norm.reset_parameters()
         
     | 
| 588 | 
         
            +
                    if self.q_norm is not None:
         
     | 
| 589 | 
         
            +
                        self.q_norm.reset_parameters()
         
     | 
| 590 | 
         
            +
                    init_weights(
         
     | 
| 591 | 
         
            +
                        self.config,
         
     | 
| 592 | 
         
            +
                        self.attn_out,
         
     | 
| 593 | 
         
            +
                        d=self.config.d_model,
         
     | 
| 594 | 
         
            +
                        layer_id=self.layer_id,
         
     | 
| 595 | 
         
            +
                        type_of_module=ModuleType.out_module,
         
     | 
| 596 | 
         
            +
                    )
         
     | 
| 597 | 
         
            +
                    init_weights(
         
     | 
| 598 | 
         
            +
                        self.config,
         
     | 
| 599 | 
         
            +
                        self.ff_out,
         
     | 
| 600 | 
         
            +
                        d=self.ff_out.in_features,
         
     | 
| 601 | 
         
            +
                        layer_id=self.layer_id,
         
     | 
| 602 | 
         
            +
                        type_of_module=ModuleType.out_module,
         
     | 
| 603 | 
         
            +
                    )
         
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
                def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
         
     | 
| 606 | 
         
            +
                    if strategy == ActivationCheckpointingStrategy.fine_grained:
         
     | 
| 607 | 
         
            +
                        self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
         
     | 
| 608 | 
         
            +
                    else:
         
     | 
| 609 | 
         
            +
                        self._activation_checkpoint_fn = None
         
     | 
| 610 | 
         
            +
             
     | 
| 611 | 
         
            +
                @classmethod
         
     | 
| 612 | 
         
            +
                def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
         
     | 
| 613 | 
         
            +
                    target_dtype = input_dtype
         
     | 
| 614 | 
         
            +
                    # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
         
     | 
| 615 | 
         
            +
                    # `is_autocast_cpu_enabled()` for CPU autocast.
         
     | 
| 616 | 
         
            +
                    # See https://github.com/pytorch/pytorch/issues/110966.
         
     | 
| 617 | 
         
            +
                    if bias.device.type == "cuda" and torch.is_autocast_enabled():
         
     | 
| 618 | 
         
            +
                        target_dtype = torch.get_autocast_gpu_dtype()
         
     | 
| 619 | 
         
            +
                    elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
         
     | 
| 620 | 
         
            +
                        target_dtype = torch.get_autocast_cpu_dtype()
         
     | 
| 621 | 
         
            +
                    if bias.dtype != target_dtype:
         
     | 
| 622 | 
         
            +
                        bias = bias.to(target_dtype)
         
     | 
| 623 | 
         
            +
                        ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
         
     | 
| 624 | 
         
            +
                    return bias
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                def _compute_varlen_params(self, attention_mask: torch.Tensor) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[int], Optional[int]]:
         
     | 
| 627 | 
         
            +
                    """
         
     | 
| 628 | 
         
            +
                    Compute variable length parameters for flash attention varlen function.
         
     | 
| 629 | 
         
            +
                    Args:
         
     | 
| 630 | 
         
            +
                        attention_mask: Attention mask tensor of shape (batch_size, seq_len)
         
     | 
| 631 | 
         
            +
                    Returns:
         
     | 
| 632 | 
         
            +
                        Tuple of (cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k)
         
     | 
| 633 | 
         
            +
                    """
         
     | 
| 634 | 
         
            +
                    # Calculate sequence lengths for each batch
         
     | 
| 635 | 
         
            +
                    seq_lens = attention_mask.sum(dim=-1).to(torch.int32)  # (batch_size,)
         
     | 
| 636 | 
         
            +
                    
         
     | 
| 637 | 
         
            +
                    # Compute cumulative sequence lengths
         
     | 
| 638 | 
         
            +
                    cu_seqlens = torch.cat([
         
     | 
| 639 | 
         
            +
                        torch.zeros(1, device=seq_lens.device),
         
     | 
| 640 | 
         
            +
                        seq_lens.cumsum(dim=0)
         
     | 
| 641 | 
         
            +
                    ]).to(torch.int32)
         
     | 
| 642 | 
         
            +
                    
         
     | 
| 643 | 
         
            +
                    max_seqlen = seq_lens.max().item()
         
     | 
| 644 | 
         
            +
                    return cu_seqlens, cu_seqlens, max_seqlen, max_seqlen
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                def _scaled_dot_product_attention(
         
     | 
| 648 | 
         
            +
                    self,
         
     | 
| 649 | 
         
            +
                    q: torch.Tensor,
         
     | 
| 650 | 
         
            +
                    k: torch.Tensor,
         
     | 
| 651 | 
         
            +
                    v: torch.Tensor,
         
     | 
| 652 | 
         
            +
                    attn_mask: Optional[torch.Tensor] = None,
         
     | 
| 653 | 
         
            +
                    dropout_p: float = 0.0,
         
     | 
| 654 | 
         
            +
                    is_causal: bool = False,
         
     | 
| 655 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 656 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 657 | 
         
            +
                ) -> torch.Tensor:
         
     | 
| 658 | 
         
            +
                    """
         
     | 
| 659 | 
         
            +
                    Computes scaled dot product attention on query, key and value tensors, using an optional
         
     | 
| 660 | 
         
            +
                    attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
         
     | 
| 661 | 
         
            +
                    
         
     | 
| 662 | 
         
            +
                    For variable length sequences, use flash_attn_varlen_func with cu_seqlens and max_seqlen parameters.
         
     | 
| 663 | 
         
            +
                    """
         
     | 
| 664 | 
         
            +
                    # Use flash_attn_varlen_func for variable length sequences with cu_seqlens
         
     | 
| 665 | 
         
            +
                    if self.config.flash_attention and self.config.flash_attn_varlen and cu_seqlens is not None:
         
     | 
| 666 | 
         
            +
                        # q, k, v: (batch_size, n_heads, seq_len, head_dim)
         
     | 
| 667 | 
         
            +
                        batch_size, n_heads, seq_len, head_dim = q.shape
         
     | 
| 668 | 
         
            +
                        assert batch_size == 1, "batch_size should be 1"
         
     | 
| 669 | 
         
            +
                        
         
     | 
| 670 | 
         
            +
                        # Reshape to (total_tokens, n_heads, head_dim) for flash_attn_varlen_func
         
     | 
| 671 | 
         
            +
                        q_flat = q.squeeze(0).permute(1, 0, 2).contiguous()
         
     | 
| 672 | 
         
            +
                        k_flat = k.squeeze(0).permute(1, 0, 2).contiguous()
         
     | 
| 673 | 
         
            +
                        v_flat = v.squeeze(0).permute(1, 0, 2).contiguous()  # (total_tokens, n_heads, head_dim)
         
     | 
| 674 | 
         
            +
                        
         
     | 
| 675 | 
         
            +
                        r = self.flash_attn_varlen_func(
         
     | 
| 676 | 
         
            +
                            q_flat, k_flat, v_flat,
         
     | 
| 677 | 
         
            +
                            cu_seqlens_q=cu_seqlens,
         
     | 
| 678 | 
         
            +
                            cu_seqlens_k=cu_seqlens,
         
     | 
| 679 | 
         
            +
                            max_seqlen_q=max_seqlen,
         
     | 
| 680 | 
         
            +
                            max_seqlen_k=max_seqlen,
         
     | 
| 681 | 
         
            +
                            dropout_p=dropout_p,
         
     | 
| 682 | 
         
            +
                            causal=False
         
     | 
| 683 | 
         
            +
                        )  # (total_tokens, nheads, headdim)
         
     | 
| 684 | 
         
            +
                        # print(f"=============cu_seqlens method=============\nLayer ID: {self.layer_id}")
         
     | 
| 685 | 
         
            +
                        # # print(f"q_flat shape: {q_flat.shape}")
         
     | 
| 686 | 
         
            +
                        # # for i in range(len(cu_seqlens) - 1):
         
     | 
| 687 | 
         
            +
                        # #     start_idx = cu_seqlens[i]
         
     | 
| 688 | 
         
            +
                        # #     end_idx = cu_seqlens[i + 1]
         
     | 
| 689 | 
         
            +
                        # #     print(f"q_flat[{start_idx}:{end_idx}] sum: {q_flat[start_idx:end_idx].sum()}")
         
     | 
| 690 | 
         
            +
                        # for i in range(len(cu_seqlens) - 1):
         
     | 
| 691 | 
         
            +
                        #     start_idx = cu_seqlens[i]
         
     | 
| 692 | 
         
            +
                        #     end_idx = cu_seqlens[i + 1]
         
     | 
| 693 | 
         
            +
                        #     print(f"r[{start_idx}:{end_idx}] sum: {r[start_idx:end_idx].sum()}")
         
     | 
| 694 | 
         
            +
                        return r.unsqueeze(0).transpose(1, 2)
         
     | 
| 695 | 
         
            +
                    
         
     | 
| 696 | 
         
            +
                    # Use flash_attn_varlen_func for variable length sequences with attention_mask
         
     | 
| 697 | 
         
            +
                    elif self.config.flash_attention and self.config.flash_attn_varlen and attn_mask is not None:
         
     | 
| 698 | 
         
            +
                        cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = self._compute_varlen_params(attn_mask)
         
     | 
| 699 | 
         
            +
                        
         
     | 
| 700 | 
         
            +
                        # q, k, v: (batch_size, n_heads, seq_len, head_dim)
         
     | 
| 701 | 
         
            +
                        # We need to filter out padding tokens based on attention_mask
         
     | 
| 702 | 
         
            +
                        batch_size, n_heads, seq_len, head_dim = q.shape
         
     | 
| 703 | 
         
            +
                        
         
     | 
| 704 | 
         
            +
                        # Create mask for valid tokens
         
     | 
| 705 | 
         
            +
                        valid_mask = attn_mask.bool()  # (batch_size, seq_len)
         
     | 
| 706 | 
         
            +
                        
         
     | 
| 707 | 
         
            +
                        # Transpose to (batch_size, seq_len, n_heads, head_dim) for easier indexing
         
     | 
| 708 | 
         
            +
                        q = q.transpose(1, 2)
         
     | 
| 709 | 
         
            +
                        k = k.transpose(1, 2)
         
     | 
| 710 | 
         
            +
                        v = v.transpose(1, 2)
         
     | 
| 711 | 
         
            +
                        
         
     | 
| 712 | 
         
            +
                        # Use boolean indexing to extract valid tokens
         
     | 
| 713 | 
         
            +
                        q_flat = q[valid_mask]  # (total_valid, n_heads, head_dim)
         
     | 
| 714 | 
         
            +
                        k_flat = k[valid_mask]  # (total_valid, n_heads, head_dim)
         
     | 
| 715 | 
         
            +
                        v_flat = v[valid_mask]  # (total_valid, n_heads, head_dim)
         
     | 
| 716 | 
         
            +
                        # print(f"=============attn_mask method=============\nLayer ID: {self.layer_id}")
         
     | 
| 717 | 
         
            +
                        # # for i in range(len(cu_seqlens_q) - 1):
         
     | 
| 718 | 
         
            +
                        # #     start_idx = cu_seqlens_q[i]
         
     | 
| 719 | 
         
            +
                        # #     end_idx = cu_seqlens_q[i + 1]
         
     | 
| 720 | 
         
            +
                        # #     print(f"q_flat[{start_idx}:{end_idx}] sum: {q_flat[start_idx:end_idx].sum()}")
         
     | 
| 721 | 
         
            +
                        
         
     | 
| 722 | 
         
            +
                        r = self.flash_attn_varlen_func(
         
     | 
| 723 | 
         
            +
                            q_flat, k_flat, v_flat,
         
     | 
| 724 | 
         
            +
                            cu_seqlens_q=cu_seqlens_q,
         
     | 
| 725 | 
         
            +
                            cu_seqlens_k=cu_seqlens_k,
         
     | 
| 726 | 
         
            +
                            max_seqlen_q=max_seqlen_q,
         
     | 
| 727 | 
         
            +
                            max_seqlen_k=max_seqlen_k,
         
     | 
| 728 | 
         
            +
                            dropout_p=dropout_p,
         
     | 
| 729 | 
         
            +
                            causal=False
         
     | 
| 730 | 
         
            +
                        )  # (total_valid, nheads, headdim)
         
     | 
| 731 | 
         
            +
                        for i in range(len(cu_seqlens_q) - 1):
         
     | 
| 732 | 
         
            +
                            start_idx = cu_seqlens_q[i]
         
     | 
| 733 | 
         
            +
                            end_idx = cu_seqlens_q[i + 1]
         
     | 
| 734 | 
         
            +
                            print(f"r[{start_idx}:{end_idx}] sum: {r[start_idx:end_idx].sum()}")
         
     | 
| 735 | 
         
            +
                        
         
     | 
| 736 | 
         
            +
                        # Reconstruct the full tensor with padding using scatter
         
     | 
| 737 | 
         
            +
                        result = torch.zeros_like(q)
         
     | 
| 738 | 
         
            +
                        
         
     | 
| 739 | 
         
            +
                        # Create indices for scatter operation
         
     | 
| 740 | 
         
            +
                        valid_indices = torch.nonzero(valid_mask, as_tuple=False)  # (total_valid, 2) - (batch_idx, seq_idx)
         
     | 
| 741 | 
         
            +
                        
         
     | 
| 742 | 
         
            +
                        # Scatter the results back to their original positions
         
     | 
| 743 | 
         
            +
                        result[valid_indices[:, 0], valid_indices[:, 1]] = r
         
     | 
| 744 | 
         
            +
                        
         
     | 
| 745 | 
         
            +
                        return result.transpose(1, 2)  # (batch_size, n_heads, seq_len, head_dim)
         
     | 
| 746 | 
         
            +
                    
         
     | 
| 747 | 
         
            +
                    # Use regular flash attention for uniform length sequences
         
     | 
| 748 | 
         
            +
                    elif self.config.flash_attention and attn_mask is None:
         
     | 
| 749 | 
         
            +
                        r = self.flash_attn_func(
         
     | 
| 750 | 
         
            +
                            q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=False
         
     | 
| 751 | 
         
            +
                        )  # (batch_size, seqlen, nheads, headdim)
         
     | 
| 752 | 
         
            +
                        # print(f"=============flash_attn_func method=============\nLayer ID: {self.layer_id}")
         
     | 
| 753 | 
         
            +
                        # # print(f"q_flat sum: {q.transpose(1, 2).sum()}")
         
     | 
| 754 | 
         
            +
                        # print(f"r sum: {r.sum()}")
         
     | 
| 755 | 
         
            +
                        return r.transpose(1, 2)
         
     | 
| 756 | 
         
            +
                    
         
     | 
| 757 | 
         
            +
                    else:
         
     | 
| 758 | 
         
            +
                        # torch's sdpa doesn't support GQA, so we're doing this
         
     | 
| 759 | 
         
            +
                        assert k.size(1) == v.size(1)
         
     | 
| 760 | 
         
            +
                        num_kv_heads = k.size(1)
         
     | 
| 761 | 
         
            +
                        num_q_heads = q.size(1)
         
     | 
| 762 | 
         
            +
                        if num_q_heads != num_kv_heads:
         
     | 
| 763 | 
         
            +
                            assert num_q_heads % num_kv_heads == 0
         
     | 
| 764 | 
         
            +
                            k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
         
     | 
| 765 | 
         
            +
                            v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
                        # Modify: MDM set causal to False, and with no attn_mask.
         
     | 
| 768 | 
         
            +
                        r = F.scaled_dot_product_attention(
         
     | 
| 769 | 
         
            +
                            q,
         
     | 
| 770 | 
         
            +
                            k,
         
     | 
| 771 | 
         
            +
                            v,
         
     | 
| 772 | 
         
            +
                            attn_mask=None,
         
     | 
| 773 | 
         
            +
                            dropout_p=dropout_p,
         
     | 
| 774 | 
         
            +
                            is_causal=False,
         
     | 
| 775 | 
         
            +
                        )
         
     | 
| 776 | 
         
            +
                        # print(f"=============no_flash method=============\nLayer ID: {self.layer_id}")
         
     | 
| 777 | 
         
            +
                        # # for i in range(q.shape[0]):
         
     | 
| 778 | 
         
            +
                        # #     print(f"q[{i}] shape: {q[i].shape}")
         
     | 
| 779 | 
         
            +
                        # #     print(f"q[{i}] sum: {q[i].sum()}")
         
     | 
| 780 | 
         
            +
                        # for i in range(r.shape[0]):
         
     | 
| 781 | 
         
            +
                        #     print(f"r[{i}] sum: {r[i].sum()}")
         
     | 
| 782 | 
         
            +
                        return r
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                def attention(
         
     | 
| 785 | 
         
            +
                    self,
         
     | 
| 786 | 
         
            +
                    q: torch.Tensor,
         
     | 
| 787 | 
         
            +
                    k: torch.Tensor,
         
     | 
| 788 | 
         
            +
                    v: torch.Tensor,
         
     | 
| 789 | 
         
            +
                    attention_bias: Optional[torch.Tensor] = None,
         
     | 
| 790 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 791 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 792 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 793 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 794 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 795 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         
     | 
| 796 | 
         
            +
                    B, T, C = q.size()  # batch size, sequence length, d_model
         
     | 
| 797 | 
         
            +
                    dtype = k.dtype
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                    # Optionally apply layer norm to keys and queries.
         
     | 
| 800 | 
         
            +
                    if self.q_norm is not None and self.k_norm is not None:
         
     | 
| 801 | 
         
            +
                        q = self.q_norm(q).to(dtype=dtype)
         
     | 
| 802 | 
         
            +
                        k = self.k_norm(k).to(dtype=dtype)
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                    # Move head forward to be next to the batch dim.
         
     | 
| 805 | 
         
            +
                    # shape: (B, nh, T, hs)
         
     | 
| 806 | 
         
            +
                    q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
         
     | 
| 807 | 
         
            +
                    # shape: (B, n_kv_h, T, hs)
         
     | 
| 808 | 
         
            +
                    k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
         
     | 
| 809 | 
         
            +
                    # shape: (B, n_kv_h, T, hs)
         
     | 
| 810 | 
         
            +
                    v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                    if layer_past is not None:
         
     | 
| 813 | 
         
            +
                        past_key, past_value = layer_past
         
     | 
| 814 | 
         
            +
                        k = torch.cat((past_key, k), dim=-2)
         
     | 
| 815 | 
         
            +
                        v = torch.cat((past_value, v), dim=-2)
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                    present = (k, v) if use_cache else None
         
     | 
| 818 | 
         
            +
                    query_len, key_len = q.shape[-2], k.shape[-2]  # could be different if layer_past not None
         
     | 
| 819 | 
         
            +
             
     | 
| 820 | 
         
            +
                    if self.config.rope:
         
     | 
| 821 | 
         
            +
                        # Apply rotary embeddings.
         
     | 
| 822 | 
         
            +
                        q, k = self.rotary_emb(q, k)
         
     | 
| 823 | 
         
            +
             
     | 
| 824 | 
         
            +
                    if attention_bias is not None:
         
     | 
| 825 | 
         
            +
                        # Resize and cast attention bias.
         
     | 
| 826 | 
         
            +
                        # The current dtype of the attention bias might not match the dtype that the SDP attn function will
         
     | 
| 827 | 
         
            +
                        # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
         
     | 
| 828 | 
         
            +
                        # as down-casting the attention bias to the autocast precision will result in -infs, which will
         
     | 
| 829 | 
         
            +
                        # cause the SDP attn function to produce NaNs.
         
     | 
| 830 | 
         
            +
                        attention_bias = self._cast_attn_bias(
         
     | 
| 831 | 
         
            +
                            attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
         
     | 
| 832 | 
         
            +
                        )
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    # Get the attention scores.
         
     | 
| 835 | 
         
            +
                    # shape: (B, nh, T, hs)
         
     | 
| 836 | 
         
            +
                    att = self._scaled_dot_product_attention(
         
     | 
| 837 | 
         
            +
                        q,
         
     | 
| 838 | 
         
            +
                        k,
         
     | 
| 839 | 
         
            +
                        v,
         
     | 
| 840 | 
         
            +
                        attn_mask=attention_mask,
         
     | 
| 841 | 
         
            +
                        dropout_p=0.0 if not self.training else self.config.attention_dropout,
         
     | 
| 842 | 
         
            +
                        is_causal=False,
         
     | 
| 843 | 
         
            +
                        cu_seqlens=cu_seqlens,
         
     | 
| 844 | 
         
            +
                        max_seqlen=max_seqlen,
         
     | 
| 845 | 
         
            +
                    )
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                    # Re-assemble all head outputs side-by-side.
         
     | 
| 848 | 
         
            +
                    att = att.transpose(1, 2).contiguous().view(B, T, C)
         
     | 
| 849 | 
         
            +
             
     | 
| 850 | 
         
            +
                    # Apply output projection.
         
     | 
| 851 | 
         
            +
                    return self.attn_out(att), present
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
                @abstractmethod
         
     | 
| 854 | 
         
            +
                def forward(
         
     | 
| 855 | 
         
            +
                    self,
         
     | 
| 856 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 857 | 
         
            +
                    attention_bias: Optional[torch.FloatTensor] = None,
         
     | 
| 858 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 859 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 860 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 861 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 862 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 863 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         
     | 
| 864 | 
         
            +
                    raise NotImplementedError
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                @classmethod
         
     | 
| 867 | 
         
            +
                def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> LLaDABlock:
         
     | 
| 868 | 
         
            +
                    if config.block_type == BlockType.sequential:
         
     | 
| 869 | 
         
            +
                        return LLaDASequentialBlock(layer_id, config, cache)
         
     | 
| 870 | 
         
            +
                    elif config.block_type == BlockType.llama:
         
     | 
| 871 | 
         
            +
                        return LLaDALlamaBlock(layer_id, config, cache)
         
     | 
| 872 | 
         
            +
                    else:
         
     | 
| 873 | 
         
            +
                        raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
             
     | 
| 876 | 
         
            +
            class LLaDASequentialBlock(LLaDABlock):
         
     | 
| 877 | 
         
            +
                """
         
     | 
| 878 | 
         
            +
                This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
         
     | 
| 879 | 
         
            +
                (plus another skip connection).
         
     | 
| 880 | 
         
            +
                """
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
         
     | 
| 883 | 
         
            +
                    super().__init__(layer_id, config, cache)
         
     | 
| 884 | 
         
            +
                    # Layer norms.
         
     | 
| 885 | 
         
            +
                    self.attn_norm = LayerNorm.build(config)
         
     | 
| 886 | 
         
            +
                    self.ff_norm = LayerNorm.build(config)
         
     | 
| 887 | 
         
            +
                    # Attention input projection. Projects x -> (q, k, v)
         
     | 
| 888 | 
         
            +
                    head_dim = config.d_model // config.n_heads
         
     | 
| 889 | 
         
            +
                    self.fused_dims = (
         
     | 
| 890 | 
         
            +
                        config.d_model,
         
     | 
| 891 | 
         
            +
                        config.effective_n_kv_heads * head_dim,
         
     | 
| 892 | 
         
            +
                        config.effective_n_kv_heads * head_dim,
         
     | 
| 893 | 
         
            +
                    )
         
     | 
| 894 | 
         
            +
                    self.att_proj = nn.Linear(
         
     | 
| 895 | 
         
            +
                        config.d_model, sum(self.fused_dims), bias=config.include_bias | config.include_qkv_bias, device=config.init_device
         
     | 
| 896 | 
         
            +
                    )
         
     | 
| 897 | 
         
            +
                    # Feed-forward input projection.
         
     | 
| 898 | 
         
            +
                    self.ff_proj = nn.Linear(
         
     | 
| 899 | 
         
            +
                        config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
         
     | 
| 900 | 
         
            +
                    )
         
     | 
| 901 | 
         
            +
             
     | 
| 902 | 
         
            +
                def reset_parameters(self):
         
     | 
| 903 | 
         
            +
                    super().reset_parameters()
         
     | 
| 904 | 
         
            +
                    self.attn_norm.reset_parameters()
         
     | 
| 905 | 
         
            +
                    self.ff_norm.reset_parameters()
         
     | 
| 906 | 
         
            +
                    # NOTE: the standard deviation for these weights does not depend on the layer.
         
     | 
| 907 | 
         
            +
                    init_weights(
         
     | 
| 908 | 
         
            +
                        self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
         
     | 
| 909 | 
         
            +
                    )
         
     | 
| 910 | 
         
            +
                    init_weights(
         
     | 
| 911 | 
         
            +
                        self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
         
     | 
| 912 | 
         
            +
                    )
         
     | 
| 913 | 
         
            +
             
     | 
| 914 | 
         
            +
                def forward(
         
     | 
| 915 | 
         
            +
                    self,
         
     | 
| 916 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 917 | 
         
            +
                    attention_bias: Optional[torch.Tensor] = None,
         
     | 
| 918 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 919 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 920 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 921 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 922 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 923 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         
     | 
| 924 | 
         
            +
                    # Get query, key, value projections.
         
     | 
| 925 | 
         
            +
                    # shape:
         
     | 
| 926 | 
         
            +
                    #  - for regular attn q, k, v: (batch_size, seq_len, d_model)
         
     | 
| 927 | 
         
            +
                    #  - for multi-query attn q: (batch_size, seq_len, d_model)
         
     | 
| 928 | 
         
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_heads)
         
     | 
| 929 | 
         
            +
                    #  - for group query attn q: (batch_size, seq_len, d_model)
         
     | 
| 930 | 
         
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_kv_heads)
         
     | 
| 931 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 932 | 
         
            +
                        q, k, v = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)).split(
         
     | 
| 933 | 
         
            +
                            self.fused_dims, dim=-1
         
     | 
| 934 | 
         
            +
                        )
         
     | 
| 935 | 
         
            +
                    else:
         
     | 
| 936 | 
         
            +
                        q, k, v = self.att_proj(self.attn_norm(x)).split(self.fused_dims, dim=-1)
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                    # Get attention scores.
         
     | 
| 939 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 940 | 
         
            +
                        att, cache = self._activation_checkpoint_fn(  # type: ignore
         
     | 
| 941 | 
         
            +
                            self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
         
     | 
| 942 | 
         
            +
                        )
         
     | 
| 943 | 
         
            +
                    else:
         
     | 
| 944 | 
         
            +
                        att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
                    # Add attention scores.
         
     | 
| 947 | 
         
            +
                    # shape: (B, T, C)
         
     | 
| 948 | 
         
            +
                    x = x + self.dropout(att)
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                    # Add feed-forward projection.
         
     | 
| 951 | 
         
            +
                    # shape: (batch_size, seq_len, d_model)
         
     | 
| 952 | 
         
            +
                    og_x = x
         
     | 
| 953 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 954 | 
         
            +
                        x = self._activation_checkpoint_fn(self.ff_norm, x)  # type: ignore
         
     | 
| 955 | 
         
            +
                    else:
         
     | 
| 956 | 
         
            +
                        x = self.ff_norm(x)
         
     | 
| 957 | 
         
            +
                    x = self.ff_proj(x)
         
     | 
| 958 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 959 | 
         
            +
                        x = self._activation_checkpoint_fn(self.act, x)  # type: ignore
         
     | 
| 960 | 
         
            +
                    else:
         
     | 
| 961 | 
         
            +
                        x = self.act(x)
         
     | 
| 962 | 
         
            +
                    x = self.ff_out(x)
         
     | 
| 963 | 
         
            +
                    x = self.dropout(x)
         
     | 
| 964 | 
         
            +
                    x = og_x + x
         
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
                    return x, cache
         
     | 
| 967 | 
         
            +
             
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
            class LLaDALlamaBlock(LLaDABlock):
         
     | 
| 970 | 
         
            +
                """
         
     | 
| 971 | 
         
            +
                This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
         
     | 
| 972 | 
         
            +
                (plus another skip connection). This block is similar to `LLaDASequentialBlock`
         
     | 
| 973 | 
         
            +
                but some operations have slightly different implementations to imitate the
         
     | 
| 974 | 
         
            +
                behavior of Llama.
         
     | 
| 975 | 
         
            +
                """
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
         
     | 
| 978 | 
         
            +
                    super().__init__(layer_id, config, cache)
         
     | 
| 979 | 
         
            +
                    # Layer norms.
         
     | 
| 980 | 
         
            +
                    self.attn_norm = LayerNorm.build(config)
         
     | 
| 981 | 
         
            +
                    self.ff_norm = LayerNorm.build(config)
         
     | 
| 982 | 
         
            +
                    self.__cache = cache
         
     | 
| 983 | 
         
            +
             
     | 
| 984 | 
         
            +
                    # Attention input projection. Projects x -> (q, k, v)
         
     | 
| 985 | 
         
            +
                    head_dim = config.d_model // config.n_heads
         
     | 
| 986 | 
         
            +
                    q_proj_out_dim = config.d_model
         
     | 
| 987 | 
         
            +
                    k_proj_out_dim = config.effective_n_kv_heads * head_dim
         
     | 
| 988 | 
         
            +
                    v_proj_out_dim = config.effective_n_kv_heads * head_dim
         
     | 
| 989 | 
         
            +
                    self.q_proj = nn.Linear(
         
     | 
| 990 | 
         
            +
                        config.d_model, q_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
         
     | 
| 991 | 
         
            +
                    )
         
     | 
| 992 | 
         
            +
                    self.k_proj = nn.Linear(
         
     | 
| 993 | 
         
            +
                        config.d_model, k_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
         
     | 
| 994 | 
         
            +
                    )
         
     | 
| 995 | 
         
            +
                    self.v_proj = nn.Linear(
         
     | 
| 996 | 
         
            +
                        config.d_model, v_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
         
     | 
| 997 | 
         
            +
                    )
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                    # Feed-forward input projection.
         
     | 
| 1000 | 
         
            +
                    self.ff_proj = nn.Linear(
         
     | 
| 1001 | 
         
            +
                        config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
         
     | 
| 1002 | 
         
            +
                    )
         
     | 
| 1003 | 
         
            +
                    # new add
         
     | 
| 1004 | 
         
            +
                    self.up_proj = nn.Linear(
         
     | 
| 1005 | 
         
            +
                        config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
         
     | 
| 1006 | 
         
            +
                    )
         
     | 
| 1007 | 
         
            +
             
     | 
| 1008 | 
         
            +
                def reset_parameters(self):
         
     | 
| 1009 | 
         
            +
                    super().reset_parameters()
         
     | 
| 1010 | 
         
            +
                    self.attn_norm.reset_parameters()
         
     | 
| 1011 | 
         
            +
                    self.ff_norm.reset_parameters()
         
     | 
| 1012 | 
         
            +
                    # NOTE: the standard deviation for these weights does not depend on the layer.
         
     | 
| 1013 | 
         
            +
                    init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
         
     | 
| 1014 | 
         
            +
                    init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
         
     | 
| 1015 | 
         
            +
                    init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
         
     | 
| 1016 | 
         
            +
                    init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
         
     | 
| 1017 | 
         
            +
                    init_weights(self.config, self.up_proj, d=self.config.d_model, layer_id=None)  # new add
         
     | 
| 1018 | 
         
            +
             
     | 
| 1019 | 
         
            +
                def forward(
         
     | 
| 1020 | 
         
            +
                    self,
         
     | 
| 1021 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 1022 | 
         
            +
                    attention_bias: Optional[torch.Tensor] = None,
         
     | 
| 1023 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 1024 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 1025 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1026 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 1027 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 1028 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         
     | 
| 1029 | 
         
            +
                    # Get query, key, value projections.
         
     | 
| 1030 | 
         
            +
                    # shape:
         
     | 
| 1031 | 
         
            +
                    #  - for regular attn q, k, v: (batch_size, seq_len, d_model)
         
     | 
| 1032 | 
         
            +
                    #  - for multi-query attn q: (batch_size, seq_len, d_model)
         
     | 
| 1033 | 
         
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_heads)
         
     | 
| 1034 | 
         
            +
                    #  - for group query attn q: (batch_size, seq_len, d_model)
         
     | 
| 1035 | 
         
            +
                    #                      k, v: (batch_size, seq_len, d_model // n_kv_heads)
         
     | 
| 1036 | 
         
            +
                    x_normed = self.attn_norm(x)
         
     | 
| 1037 | 
         
            +
                    q = self.q_proj(x_normed)
         
     | 
| 1038 | 
         
            +
                    k = self.k_proj(x_normed)
         
     | 
| 1039 | 
         
            +
                    v = self.v_proj(x_normed)
         
     | 
| 1040 | 
         
            +
             
     | 
| 1041 | 
         
            +
                    # Get attention scores.
         
     | 
| 1042 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 1043 | 
         
            +
                        att, cache = self._activation_checkpoint_fn(  # type: ignore
         
     | 
| 1044 | 
         
            +
                            self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
         
     | 
| 1045 | 
         
            +
                        )
         
     | 
| 1046 | 
         
            +
                    else:
         
     | 
| 1047 | 
         
            +
                        att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                    # Add attention scores.
         
     | 
| 1050 | 
         
            +
                    # shape: (B, T, C)
         
     | 
| 1051 | 
         
            +
                    x = x + self.dropout(att)
         
     | 
| 1052 | 
         
            +
             
     | 
| 1053 | 
         
            +
                    # Add feed-forward projection.
         
     | 
| 1054 | 
         
            +
                    # shape: (batch_size, seq_len, d_model)
         
     | 
| 1055 | 
         
            +
                    og_x = x
         
     | 
| 1056 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 1057 | 
         
            +
                        x = self._activation_checkpoint_fn(self.ff_norm, x)  # type: ignore
         
     | 
| 1058 | 
         
            +
                    else:
         
     | 
| 1059 | 
         
            +
                        x = self.ff_norm(x)
         
     | 
| 1060 | 
         
            +
                    x, x_up = self.ff_proj(x), self.up_proj(x) # new add
         
     | 
| 1061 | 
         
            +
                    if self._activation_checkpoint_fn is not None:
         
     | 
| 1062 | 
         
            +
                        x = self._activation_checkpoint_fn(self.act, x)  # type: ignore
         
     | 
| 1063 | 
         
            +
                    else:
         
     | 
| 1064 | 
         
            +
                        x = self.act(x)
         
     | 
| 1065 | 
         
            +
                    x = x * x_up # new add
         
     | 
| 1066 | 
         
            +
                    x = self.ff_out(x)
         
     | 
| 1067 | 
         
            +
                    x = self.dropout(x)
         
     | 
| 1068 | 
         
            +
                    x = og_x + x
         
     | 
| 1069 | 
         
            +
             
     | 
| 1070 | 
         
            +
                    return x, cache
         
     | 
| 1071 | 
         
            +
             
     | 
| 1072 | 
         
            +
             
     | 
| 1073 | 
         
            +
            class LLaDAOutput(NamedTuple):
         
     | 
| 1074 | 
         
            +
                logits: torch.FloatTensor
         
     | 
| 1075 | 
         
            +
                """
         
     | 
| 1076 | 
         
            +
                A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
         
     | 
| 1077 | 
         
            +
                for the next token *before* normalization via (log) softmax.
         
     | 
| 1078 | 
         
            +
                """
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
         
     | 
| 1081 | 
         
            +
                """
         
     | 
| 1082 | 
         
            +
                Attention keys and values from each block.
         
     | 
| 1083 | 
         
            +
                """
         
     | 
| 1084 | 
         
            +
             
     | 
| 1085 | 
         
            +
                hidden_states: Optional[Tuple[torch.Tensor]]
         
     | 
| 1086 | 
         
            +
                """
         
     | 
| 1087 | 
         
            +
                Hidden states from each block.
         
     | 
| 1088 | 
         
            +
                """
         
     | 
| 1089 | 
         
            +
             
     | 
| 1090 | 
         
            +
             
     | 
| 1091 | 
         
            +
            class LLaDAGenerateOutput(NamedTuple):
         
     | 
| 1092 | 
         
            +
                token_ids: torch.LongTensor
         
     | 
| 1093 | 
         
            +
                """
         
     | 
| 1094 | 
         
            +
                The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
         
     | 
| 1095 | 
         
            +
                These do *not* include the original input IDs.
         
     | 
| 1096 | 
         
            +
                """
         
     | 
| 1097 | 
         
            +
             
     | 
| 1098 | 
         
            +
                scores: torch.FloatTensor
         
     | 
| 1099 | 
         
            +
                """
         
     | 
| 1100 | 
         
            +
                The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
         
     | 
| 1101 | 
         
            +
                """
         
     | 
| 1102 | 
         
            +
             
     | 
| 1103 | 
         
            +
             
     | 
| 1104 | 
         
            +
            class LLaDABlockGroup(nn.ModuleList):
         
     | 
| 1105 | 
         
            +
                def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
         
     | 
| 1106 | 
         
            +
                    super().__init__(modules)
         
     | 
| 1107 | 
         
            +
                    self.config = config
         
     | 
| 1108 | 
         
            +
                    self.layer_offset = layer_offset
         
     | 
| 1109 | 
         
            +
                    self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
         
     | 
| 1110 | 
         
            +
                    self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
         
     | 
| 1111 | 
         
            +
             
     | 
| 1112 | 
         
            +
                def forward(
         
     | 
| 1113 | 
         
            +
                    self,
         
     | 
| 1114 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 1115 | 
         
            +
                    attention_bias: Optional[torch.FloatTensor] = None,
         
     | 
| 1116 | 
         
            +
                    layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
         
     | 
| 1117 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 1118 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1119 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 1120 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 1121 | 
         
            +
                ) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
         
     | 
| 1122 | 
         
            +
                    attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
         
     | 
| 1123 | 
         
            +
                    for block_idx, block in enumerate(self):
         
     | 
| 1124 | 
         
            +
                        layer_past = None if layers_past is None else layers_past[block_idx]
         
     | 
| 1125 | 
         
            +
                        block_idx += self.layer_offset
         
     | 
| 1126 | 
         
            +
                        if (
         
     | 
| 1127 | 
         
            +
                            (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
         
     | 
| 1128 | 
         
            +
                            or (
         
     | 
| 1129 | 
         
            +
                                self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
         
     | 
| 1130 | 
         
            +
                                and block_idx % 2 == 0
         
     | 
| 1131 | 
         
            +
                            )
         
     | 
| 1132 | 
         
            +
                            or (
         
     | 
| 1133 | 
         
            +
                                self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
         
     | 
| 1134 | 
         
            +
                                and block_idx % 3 == 0
         
     | 
| 1135 | 
         
            +
                            )
         
     | 
| 1136 | 
         
            +
                            or (
         
     | 
| 1137 | 
         
            +
                                self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
         
     | 
| 1138 | 
         
            +
                                and block_idx % 4 == 0
         
     | 
| 1139 | 
         
            +
                            )
         
     | 
| 1140 | 
         
            +
                        ):
         
     | 
| 1141 | 
         
            +
                            # shape: (batch_size, seq_len, d_model)
         
     | 
| 1142 | 
         
            +
                            x, cache = self._activation_checkpoint_fn(  # type: ignore
         
     | 
| 1143 | 
         
            +
                                block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
         
     | 
| 1144 | 
         
            +
                            )
         
     | 
| 1145 | 
         
            +
                        else:
         
     | 
| 1146 | 
         
            +
                            # shape: (batch_size, seq_len, d_model)
         
     | 
| 1147 | 
         
            +
                            x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
         
     | 
| 1148 | 
         
            +
                        if attn_key_values is not None:
         
     | 
| 1149 | 
         
            +
                            assert cache is not None
         
     | 
| 1150 | 
         
            +
                            attn_key_values.append(cache)
         
     | 
| 1151 | 
         
            +
                    return x, attn_key_values
         
     | 
| 1152 | 
         
            +
             
     | 
| 1153 | 
         
            +
                def reset_parameters(self):
         
     | 
| 1154 | 
         
            +
                    for block in self:
         
     | 
| 1155 | 
         
            +
                        block.reset_parameters()
         
     | 
| 1156 | 
         
            +
             
     | 
| 1157 | 
         
            +
                def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
         
     | 
| 1158 | 
         
            +
                    self.activation_checkpointing_strategy = strategy
         
     | 
| 1159 | 
         
            +
                    for block in self:
         
     | 
| 1160 | 
         
            +
                        block.set_activation_checkpointing(strategy)
         
     | 
| 1161 | 
         
            +
             
     | 
| 1162 | 
         
            +
             
     | 
| 1163 | 
         
            +
            class LLaDAModel(nn.Module):
         
     | 
| 1164 | 
         
            +
                def __init__(self, config: ModelConfig, init_params: bool = True):
         
     | 
| 1165 | 
         
            +
                    super().__init__()
         
     | 
| 1166 | 
         
            +
                    self.config = config
         
     | 
| 1167 | 
         
            +
                    self.__cache = BufferCache()
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                    # Validate config.
         
     | 
| 1170 | 
         
            +
                    if self.config.alibi and self.config.flash_attention:
         
     | 
| 1171 | 
         
            +
                        raise Exception("ALiBi is currently not supported with FlashAttention")
         
     | 
| 1172 | 
         
            +
             
     | 
| 1173 | 
         
            +
                    if self.config.alibi and self.config.rope:
         
     | 
| 1174 | 
         
            +
                        raise Exception("ALiBi and RoPE are mutually exclusive")
         
     | 
| 1175 | 
         
            +
             
     | 
| 1176 | 
         
            +
                    if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
         
     | 
| 1177 | 
         
            +
                        if self.config.embedding_size < self.config.vocab_size:
         
     | 
| 1178 | 
         
            +
                            raise Exception("embedding size should be at least as big as vocab size")
         
     | 
| 1179 | 
         
            +
                        elif self.config.embedding_size % 128 != 0:
         
     | 
| 1180 | 
         
            +
                            import warnings
         
     | 
| 1181 | 
         
            +
             
     | 
| 1182 | 
         
            +
                            warnings.warn(
         
     | 
| 1183 | 
         
            +
                                "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
         
     | 
| 1184 | 
         
            +
                            )
         
     | 
| 1185 | 
         
            +
             
     | 
| 1186 | 
         
            +
                    self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
         
     | 
| 1187 | 
         
            +
                    self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
         
     | 
| 1188 | 
         
            +
             
     | 
| 1189 | 
         
            +
                    if not (
         
     | 
| 1190 | 
         
            +
                        0 < self.config.block_group_size <= self.config.n_layers
         
     | 
| 1191 | 
         
            +
                        and self.config.n_layers % self.config.block_group_size == 0
         
     | 
| 1192 | 
         
            +
                    ):
         
     | 
| 1193 | 
         
            +
                        raise Exception("n layers must be divisible by block group size")
         
     | 
| 1194 | 
         
            +
             
     | 
| 1195 | 
         
            +
                    torch.backends.cuda.enable_flash_sdp(True)
         
     | 
| 1196 | 
         
            +
                    torch.backends.cuda.enable_mem_efficient_sdp(False)  # this is super slow so make sure torch won't use it
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
                    self.transformer = nn.ModuleDict(
         
     | 
| 1199 | 
         
            +
                        dict(
         
     | 
| 1200 | 
         
            +
                            wte=nn.Embedding(
         
     | 
| 1201 | 
         
            +
                                config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
         
     | 
| 1202 | 
         
            +
                            ),
         
     | 
| 1203 | 
         
            +
                            emb_drop=Dropout(config.embedding_dropout),
         
     | 
| 1204 | 
         
            +
                            ln_f=LayerNorm.build(config),
         
     | 
| 1205 | 
         
            +
                        )
         
     | 
| 1206 | 
         
            +
                    )
         
     | 
| 1207 | 
         
            +
             
     | 
| 1208 | 
         
            +
                    blocks = [LLaDABlock.build(i, config, self.__cache) for i in range(config.n_layers)]
         
     | 
| 1209 | 
         
            +
                    if self.config.block_group_size > 1:
         
     | 
| 1210 | 
         
            +
                        block_groups = [
         
     | 
| 1211 | 
         
            +
                            LLaDABlockGroup(config, i, blocks[i : i + config.block_group_size])
         
     | 
| 1212 | 
         
            +
                            for i in range(0, config.n_layers, config.block_group_size)
         
     | 
| 1213 | 
         
            +
                        ]
         
     | 
| 1214 | 
         
            +
                        self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
         
     | 
| 1215 | 
         
            +
                    else:
         
     | 
| 1216 | 
         
            +
                        self.transformer.update({"blocks": nn.ModuleList(blocks)})
         
     | 
| 1217 | 
         
            +
             
     | 
| 1218 | 
         
            +
                    if not (self.config.alibi or self.config.rope):
         
     | 
| 1219 | 
         
            +
                        self.transformer.update(
         
     | 
| 1220 | 
         
            +
                            {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
         
     | 
| 1221 | 
         
            +
                        )
         
     | 
| 1222 | 
         
            +
                    if not config.weight_tying:
         
     | 
| 1223 | 
         
            +
                        self.transformer.update(
         
     | 
| 1224 | 
         
            +
                            {
         
     | 
| 1225 | 
         
            +
                                "ff_out": nn.Linear(
         
     | 
| 1226 | 
         
            +
                                    config.d_model,
         
     | 
| 1227 | 
         
            +
                                    config.embedding_size or config.vocab_size,
         
     | 
| 1228 | 
         
            +
                                    bias=config.include_bias,
         
     | 
| 1229 | 
         
            +
                                    device=config.init_device,
         
     | 
| 1230 | 
         
            +
                                )
         
     | 
| 1231 | 
         
            +
                            }
         
     | 
| 1232 | 
         
            +
                        )
         
     | 
| 1233 | 
         
            +
                    # When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
         
     | 
| 1234 | 
         
            +
                    if init_params and self.config.init_device != "meta":
         
     | 
| 1235 | 
         
            +
                        self.reset_parameters()
         
     | 
| 1236 | 
         
            +
                    self.__num_fwd_flops: Optional[int] = None
         
     | 
| 1237 | 
         
            +
             
     | 
| 1238 | 
         
            +
                    # Warm up cache.
         
     | 
| 1239 | 
         
            +
                    if self.config.alibi:
         
     | 
| 1240 | 
         
            +
                        get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
         
     | 
| 1241 | 
         
            +
                        self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
         
     | 
| 1242 | 
         
            +
             
     | 
| 1243 | 
         
            +
                def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
         
     | 
| 1244 | 
         
            +
                    self.activation_checkpointing_strategy = strategy
         
     | 
| 1245 | 
         
            +
                    if self.config.block_group_size != 1:
         
     | 
| 1246 | 
         
            +
                        for block_group in self.transformer.block_groups:
         
     | 
| 1247 | 
         
            +
                            block_group.set_activation_checkpointing(strategy)
         
     | 
| 1248 | 
         
            +
                    else:
         
     | 
| 1249 | 
         
            +
                        for block in self.transformer.blocks:
         
     | 
| 1250 | 
         
            +
                            block.set_activation_checkpointing(strategy)
         
     | 
| 1251 | 
         
            +
             
     | 
| 1252 | 
         
            +
                @property
         
     | 
| 1253 | 
         
            +
                def device(self) -> torch.device:
         
     | 
| 1254 | 
         
            +
                    device: torch.device = self.transformer.wte.weight.device  # type: ignore
         
     | 
| 1255 | 
         
            +
                    if device.type == "meta":
         
     | 
| 1256 | 
         
            +
                        return _non_meta_init_device(self.config)
         
     | 
| 1257 | 
         
            +
                    else:
         
     | 
| 1258 | 
         
            +
                        return device
         
     | 
| 1259 | 
         
            +
             
     | 
| 1260 | 
         
            +
                def reset_parameters(self):
         
     | 
| 1261 | 
         
            +
                    log.info("Initializing model parameters...")
         
     | 
| 1262 | 
         
            +
                    # Top-level embeddings / linear layers.
         
     | 
| 1263 | 
         
            +
                    init_weights(
         
     | 
| 1264 | 
         
            +
                        self.config,
         
     | 
| 1265 | 
         
            +
                        self.transformer.wte,  # type: ignore
         
     | 
| 1266 | 
         
            +
                        std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
         
     | 
| 1267 | 
         
            +
                        type_of_module=ModuleType.emb,
         
     | 
| 1268 | 
         
            +
                    )
         
     | 
| 1269 | 
         
            +
                    if hasattr(self.transformer, "wpe"):
         
     | 
| 1270 | 
         
            +
                        init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb)  # type: ignore
         
     | 
| 1271 | 
         
            +
             
     | 
| 1272 | 
         
            +
                    # Top-level layer norm.
         
     | 
| 1273 | 
         
            +
                    self.transformer.ln_f.reset_parameters()  # type: ignore
         
     | 
| 1274 | 
         
            +
             
     | 
| 1275 | 
         
            +
                    # Output weights.
         
     | 
| 1276 | 
         
            +
                    if hasattr(self.transformer, "ff_out"):
         
     | 
| 1277 | 
         
            +
                        init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out)  # type: ignore
         
     | 
| 1278 | 
         
            +
             
     | 
| 1279 | 
         
            +
                    # Let the blocks handle themselves.
         
     | 
| 1280 | 
         
            +
                    if self.config.block_group_size == 1:
         
     | 
| 1281 | 
         
            +
                        for block in self.transformer.blocks:
         
     | 
| 1282 | 
         
            +
                            block.reset_parameters()
         
     | 
| 1283 | 
         
            +
                    else:
         
     | 
| 1284 | 
         
            +
                        for block_group in self.transformer.block_groups:
         
     | 
| 1285 | 
         
            +
                            block_group.reset_parameters()
         
     | 
| 1286 | 
         
            +
             
     | 
| 1287 | 
         
            +
                def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
         
     | 
| 1288 | 
         
            +
                    if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
         
     | 
| 1289 | 
         
            +
                        -1
         
     | 
| 1290 | 
         
            +
                    ] >= seq_len:
         
     | 
| 1291 | 
         
            +
                        if alibi_bias.device != device:
         
     | 
| 1292 | 
         
            +
                            alibi_bias = alibi_bias.to(device)
         
     | 
| 1293 | 
         
            +
                            self.__cache["alibi_attention_bias"] = alibi_bias
         
     | 
| 1294 | 
         
            +
                        return alibi_bias
         
     | 
| 1295 | 
         
            +
                    with torch.autocast(device.type, enabled=False):
         
     | 
| 1296 | 
         
            +
                        alibi_bias = alibi_attention_bias(seq_len, self.config, device)
         
     | 
| 1297 | 
         
            +
                    self.__cache["alibi_attention_bias"] = alibi_bias
         
     | 
| 1298 | 
         
            +
                    return alibi_bias
         
     | 
| 1299 | 
         
            +
             
     | 
| 1300 | 
         
            +
                def forward(
         
     | 
| 1301 | 
         
            +
                    self,
         
     | 
| 1302 | 
         
            +
                    input_ids: torch.LongTensor,
         
     | 
| 1303 | 
         
            +
                    input_embeddings: Optional[torch.FloatTensor] = None,
         
     | 
| 1304 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1305 | 
         
            +
                    attention_bias: Optional[torch.Tensor] = None,
         
     | 
| 1306 | 
         
            +
                    past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
         
     | 
| 1307 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 1308 | 
         
            +
                    last_logits_only: bool = False,
         
     | 
| 1309 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1310 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 1311 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 1312 | 
         
            +
                ) -> LLaDAOutput:
         
     | 
| 1313 | 
         
            +
                    """
         
     | 
| 1314 | 
         
            +
                    :param input_ids: A tensor of shape `(batch_size, seq_len)`.
         
     | 
| 1315 | 
         
            +
                    :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
         
     | 
| 1316 | 
         
            +
                        embeddings. When provided, it is treated as the output of the input embedding layer.
         
     | 
| 1317 | 
         
            +
                    :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
         
     | 
| 1318 | 
         
            +
                        which input IDs are masked. A `1` value in the mask means that
         
     | 
| 1319 | 
         
            +
                        the corresponding input ID should *not* be ignored. A `0` means
         
     | 
| 1320 | 
         
            +
                        that the corresponding input ID is masked.
         
     | 
| 1321 | 
         
            +
             
     | 
| 1322 | 
         
            +
                        This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
         
     | 
| 1323 | 
         
            +
                        library.
         
     | 
| 1324 | 
         
            +
                    :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
         
     | 
| 1325 | 
         
            +
                        `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
         
     | 
| 1326 | 
         
            +
                        to introduce causal or other biases.
         
     | 
| 1327 | 
         
            +
             
     | 
| 1328 | 
         
            +
                        If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
         
     | 
| 1329 | 
         
            +
                        indicates that the i-th element in the sequence is allowed to attend to the j-th
         
     | 
| 1330 | 
         
            +
                        element in the sequence.
         
     | 
| 1331 | 
         
            +
             
     | 
| 1332 | 
         
            +
                        If the tensor is a float tensor, it will just be added to the attention
         
     | 
| 1333 | 
         
            +
                        scores before the softmax.
         
     | 
| 1334 | 
         
            +
             
     | 
| 1335 | 
         
            +
                        The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
         
     | 
| 1336 | 
         
            +
                    :param past_key_values: Pre-computed keys and values for each attention block.
         
     | 
| 1337 | 
         
            +
                        Can be used to speed up sequential decoding. The `input_ids` which have
         
     | 
| 1338 | 
         
            +
                        their past given to this model should not be passed as `input_ids` as they have already been computed.
         
     | 
| 1339 | 
         
            +
                    :param use_cache: If `True`, return key and value tensors for each block.
         
     | 
| 1340 | 
         
            +
                    :param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
         
     | 
| 1341 | 
         
            +
                        This can speed up decoding when you only care about the next token.
         
     | 
| 1342 | 
         
            +
                    """
         
     | 
| 1343 | 
         
            +
                    # Add Basic MDM Model config check
         
     | 
| 1344 | 
         
            +
                    assert not self.config.alibi, "Alibi length extrapolation is not supported for MDM."
         
     | 
| 1345 | 
         
            +
                    assert self.config.rope, "Rope must be used in Llama-Encoder for MDM."
         
     | 
| 1346 | 
         
            +
                    assert (past_key_values is None and not use_cache), "The kvcache is not suppotred for MDM."
         
     | 
| 1347 | 
         
            +
             
     | 
| 1348 | 
         
            +
                    output_hidden_states = output_hidden_states if output_hidden_states is not None else False
         
     | 
| 1349 | 
         
            +
             
     | 
| 1350 | 
         
            +
                    if past_key_values:
         
     | 
| 1351 | 
         
            +
                        assert len(past_key_values) == self.config.n_layers
         
     | 
| 1352 | 
         
            +
             
     | 
| 1353 | 
         
            +
                    batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
         
     | 
| 1354 | 
         
            +
                    if past_key_values is None:
         
     | 
| 1355 | 
         
            +
                        past_length = 0
         
     | 
| 1356 | 
         
            +
                    else:
         
     | 
| 1357 | 
         
            +
                        past_length = past_key_values[0][0].size(-2)
         
     | 
| 1358 | 
         
            +
             
     | 
| 1359 | 
         
            +
                    # Get embeddings of input.
         
     | 
| 1360 | 
         
            +
                    # shape: (batch_size, seq_len, d_model)
         
     | 
| 1361 | 
         
            +
                    x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings  # type: ignore
         
     | 
| 1362 | 
         
            +
             
     | 
| 1363 | 
         
            +
                    if self.config.input_emb_norm:
         
     | 
| 1364 | 
         
            +
                        x = x * (self.config.d_model**0.5)
         
     | 
| 1365 | 
         
            +
             
     | 
| 1366 | 
         
            +
                    if not (self.config.alibi or self.config.rope):
         
     | 
| 1367 | 
         
            +
                        # Get positional embeddings.
         
     | 
| 1368 | 
         
            +
                        # shape: (1, seq_len)
         
     | 
| 1369 | 
         
            +
                        pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
         
     | 
| 1370 | 
         
            +
                        # shape: (1, seq_len, d_model)
         
     | 
| 1371 | 
         
            +
                        pos_emb = self.transformer.wpe(pos)  # type: ignore
         
     | 
| 1372 | 
         
            +
                        x = pos_emb + x
         
     | 
| 1373 | 
         
            +
             
     | 
| 1374 | 
         
            +
                    # Add input + positional embeddings and apply dropout.
         
     | 
| 1375 | 
         
            +
                    # shape: (batch_size, seq_len, d_model)
         
     | 
| 1376 | 
         
            +
                    x = self.transformer.emb_drop(x)  # type: ignore
         
     | 
| 1377 | 
         
            +
             
     | 
| 1378 | 
         
            +
                    # Save original attention mask for varlen computation
         
     | 
| 1379 | 
         
            +
                    original_attention_mask = attention_mask
         
     | 
| 1380 | 
         
            +
             
     | 
| 1381 | 
         
            +
                    # Transform the attention mask into what the blocks expect.
         
     | 
| 1382 | 
         
            +
                    if attention_mask is not None and 0.0 in attention_mask:
         
     | 
| 1383 | 
         
            +
                        # shape: (batch_size, 1, 1, seq_len)
         
     | 
| 1384 | 
         
            +
                        attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
         
     | 
| 1385 | 
         
            +
                        attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
         
     | 
| 1386 | 
         
            +
                    else:
         
     | 
| 1387 | 
         
            +
                        attention_mask = None
         
     | 
| 1388 | 
         
            +
             
     | 
| 1389 | 
         
            +
                    # Merge attention mask with attention bias.
         
     | 
| 1390 | 
         
            +
                    if (
         
     | 
| 1391 | 
         
            +
                        attention_bias is not None
         
     | 
| 1392 | 
         
            +
                        or attention_mask is not None
         
     | 
| 1393 | 
         
            +
                        or self.config.alibi
         
     | 
| 1394 | 
         
            +
                        # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
         
     | 
| 1395 | 
         
            +
                        # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
         
     | 
| 1396 | 
         
            +
                        # scores correctly.
         
     | 
| 1397 | 
         
            +
                        or past_key_values is not None
         
     | 
| 1398 | 
         
            +
                    ):
         
     | 
| 1399 | 
         
            +
                        if attention_bias is None and self.config.alibi:
         
     | 
| 1400 | 
         
            +
                            attention_bias = get_causal_attention_bias(
         
     | 
| 1401 | 
         
            +
                                self.__cache, past_length + seq_len, x.device
         
     | 
| 1402 | 
         
            +
                            ) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
         
     | 
| 1403 | 
         
            +
                        elif attention_bias is None:
         
     | 
| 1404 | 
         
            +
                            attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
         
     | 
| 1405 | 
         
            +
                        elif attention_bias.dtype in (torch.int8, torch.bool):
         
     | 
| 1406 | 
         
            +
                            attention_bias = attention_bias.to(dtype=torch.float)
         
     | 
| 1407 | 
         
            +
                            attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
         
     | 
| 1408 | 
         
            +
             
     | 
| 1409 | 
         
            +
                        # Transform to the right shape and data type.
         
     | 
| 1410 | 
         
            +
                        mask_len = seq_len
         
     | 
| 1411 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 1412 | 
         
            +
                            mask_len = attention_mask.shape[-1]
         
     | 
| 1413 | 
         
            +
                        elif past_key_values is not None:
         
     | 
| 1414 | 
         
            +
                            mask_len = past_key_values[0][0].shape[-2] + seq_len
         
     | 
| 1415 | 
         
            +
                        attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
         
     | 
| 1416 | 
         
            +
             
     | 
| 1417 | 
         
            +
                        # Add in the masking bias.
         
     | 
| 1418 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 1419 | 
         
            +
                            attention_bias = attention_bias + attention_mask
         
     | 
| 1420 | 
         
            +
                            # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
         
     | 
| 1421 | 
         
            +
                            # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
         
     | 
| 1422 | 
         
            +
                            # it can produce NaNs.
         
     | 
| 1423 | 
         
            +
                            ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
         
     | 
| 1424 | 
         
            +
             
     | 
| 1425 | 
         
            +
                    attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
         
     | 
| 1426 | 
         
            +
             
     | 
| 1427 | 
         
            +
                    # decoder layers
         
     | 
| 1428 | 
         
            +
                    all_hidden_states = []
         
     | 
| 1429 | 
         
            +
             
     | 
| 1430 | 
         
            +
                    # Apply blocks one-by-one.
         
     | 
| 1431 | 
         
            +
                    if self.config.block_group_size == 1:
         
     | 
| 1432 | 
         
            +
                        for block_idx, block in enumerate(self.transformer.blocks):
         
     | 
| 1433 | 
         
            +
                            if output_hidden_states:
         
     | 
| 1434 | 
         
            +
                                # add hidden states
         
     | 
| 1435 | 
         
            +
                                all_hidden_states.append(x)
         
     | 
| 1436 | 
         
            +
             
     | 
| 1437 | 
         
            +
                            layer_past = None if past_key_values is None else past_key_values[block_idx]
         
     | 
| 1438 | 
         
            +
                            if (
         
     | 
| 1439 | 
         
            +
                                (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
         
     | 
| 1440 | 
         
            +
                                or (
         
     | 
| 1441 | 
         
            +
                                    self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
         
     | 
| 1442 | 
         
            +
                                    and block_idx % 2 == 0
         
     | 
| 1443 | 
         
            +
                                )
         
     | 
| 1444 | 
         
            +
                                or (
         
     | 
| 1445 | 
         
            +
                                    self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
         
     | 
| 1446 | 
         
            +
                                    and block_idx % 3 == 0
         
     | 
| 1447 | 
         
            +
                                )
         
     | 
| 1448 | 
         
            +
                                or (
         
     | 
| 1449 | 
         
            +
                                    self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
         
     | 
| 1450 | 
         
            +
                                    and block_idx % 4 == 0
         
     | 
| 1451 | 
         
            +
                                )
         
     | 
| 1452 | 
         
            +
                            ):
         
     | 
| 1453 | 
         
            +
                                # shape: (batch_size, seq_len, d_model)
         
     | 
| 1454 | 
         
            +
                                x, cache = self._activation_checkpoint_fn(
         
     | 
| 1455 | 
         
            +
                                    block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=original_attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
         
     | 
| 1456 | 
         
            +
                                )
         
     | 
| 1457 | 
         
            +
                            else:
         
     | 
| 1458 | 
         
            +
                                # shape: (batch_size, seq_len, d_model)
         
     | 
| 1459 | 
         
            +
                                x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache, attention_mask=original_attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
         
     | 
| 1460 | 
         
            +
                            if attn_key_values is not None:
         
     | 
| 1461 | 
         
            +
                                assert cache is not None
         
     | 
| 1462 | 
         
            +
                                attn_key_values.append(cache)
         
     | 
| 1463 | 
         
            +
                    else:
         
     | 
| 1464 | 
         
            +
                        for group_idx, block_group in enumerate(self.transformer.block_groups):
         
     | 
| 1465 | 
         
            +
                            if output_hidden_states:
         
     | 
| 1466 | 
         
            +
                                # add hidden states
         
     | 
| 1467 | 
         
            +
                                all_hidden_states.append(x)
         
     | 
| 1468 | 
         
            +
             
     | 
| 1469 | 
         
            +
                            layers_past = (
         
     | 
| 1470 | 
         
            +
                                None
         
     | 
| 1471 | 
         
            +
                                if past_key_values is None
         
     | 
| 1472 | 
         
            +
                                else past_key_values[
         
     | 
| 1473 | 
         
            +
                                    group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
         
     | 
| 1474 | 
         
            +
                                ]
         
     | 
| 1475 | 
         
            +
                            )
         
     | 
| 1476 | 
         
            +
                            x, cache = block_group(
         
     | 
| 1477 | 
         
            +
                                x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache, cu_seqlens=cu_seqlens
         
     | 
| 1478 | 
         
            +
                            )
         
     | 
| 1479 | 
         
            +
                            if attn_key_values is not None:
         
     | 
| 1480 | 
         
            +
                                assert cache is not None
         
     | 
| 1481 | 
         
            +
                                attn_key_values.extend(cache)
         
     | 
| 1482 | 
         
            +
             
     | 
| 1483 | 
         
            +
                    if last_logits_only:
         
     | 
| 1484 | 
         
            +
                        # shape: (batch_size, 1, d_model)
         
     | 
| 1485 | 
         
            +
                        x = x[:, -1, :].unsqueeze(1)
         
     | 
| 1486 | 
         
            +
             
     | 
| 1487 | 
         
            +
                    # Apply final layer norm.
         
     | 
| 1488 | 
         
            +
                    # shape: (batch_size, seq_len or 1, d_model)
         
     | 
| 1489 | 
         
            +
                    x = self.transformer.ln_f(x)  # type: ignore
         
     | 
| 1490 | 
         
            +
                    if output_hidden_states:
         
     | 
| 1491 | 
         
            +
                        # add final hidden state post-final-layernorm, following HuggingFace's convention
         
     | 
| 1492 | 
         
            +
                        all_hidden_states.append(x)
         
     | 
| 1493 | 
         
            +
             
     | 
| 1494 | 
         
            +
                    # Get logits.
         
     | 
| 1495 | 
         
            +
                    # shape: (batch_size, seq_len or 1, vocab_size)
         
     | 
| 1496 | 
         
            +
                    if self.config.weight_tying:
         
     | 
| 1497 | 
         
            +
                        logits = F.linear(x, self.transformer.wte.weight, None)  # type: ignore
         
     | 
| 1498 | 
         
            +
                    else:
         
     | 
| 1499 | 
         
            +
                        logits = self.transformer.ff_out(x)  # type: ignore
         
     | 
| 1500 | 
         
            +
                    if self.config.scale_logits:
         
     | 
| 1501 | 
         
            +
                        logits.mul_(1 / math.sqrt(self.config.d_model))
         
     | 
| 1502 | 
         
            +
             
     | 
| 1503 | 
         
            +
                    return LLaDAOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None)  # type: ignore[arg-type]
         
     | 
| 1504 | 
         
            +
             
     | 
| 1505 | 
         
            +
             
     | 
| 1506 | 
         
            +
            def create_model_config_from_pretrained_config(config: LLaDAConfig):
         
     | 
| 1507 | 
         
            +
                """
         
     | 
| 1508 | 
         
            +
                Utility function
         
     | 
| 1509 | 
         
            +
                """
         
     | 
| 1510 | 
         
            +
             
     | 
| 1511 | 
         
            +
                kwargs = {}
         
     | 
| 1512 | 
         
            +
                for field in fields(ModelConfig):
         
     | 
| 1513 | 
         
            +
                    kwargs[field.name] = getattr(config, field.name)
         
     | 
| 1514 | 
         
            +
             
     | 
| 1515 | 
         
            +
                model_config = ModelConfig(**kwargs)
         
     | 
| 1516 | 
         
            +
                return model_config
         
     | 
| 1517 | 
         
            +
             
     | 
| 1518 | 
         
            +
             
     | 
| 1519 | 
         
            +
            class LLaDAModelLM(PreTrainedModel):
         
     | 
| 1520 | 
         
            +
                """
         
     | 
| 1521 | 
         
            +
                Extremely barebones HF model wrapper.
         
     | 
| 1522 | 
         
            +
                """
         
     | 
| 1523 | 
         
            +
             
     | 
| 1524 | 
         
            +
                config_class = LLaDAConfig
         
     | 
| 1525 | 
         
            +
                base_model_prefix = "model"
         
     | 
| 1526 | 
         
            +
                _no_split_modules = ["LLaDABlock", "LLaDASequentialBlock", "LLaDALlamaBlock"]
         
     | 
| 1527 | 
         
            +
                _supports_flash_attn_2 = True  # LNY
         
     | 
| 1528 | 
         
            +
             
     | 
| 1529 | 
         
            +
                def __init__(self, config: LLaDAConfig, model: Optional[LLaDAModel] = None, init_params: bool = False):
         
     | 
| 1530 | 
         
            +
                    super().__init__(config)
         
     | 
| 1531 | 
         
            +
             
     | 
| 1532 | 
         
            +
                    if not model:
         
     | 
| 1533 | 
         
            +
                        model_config = create_model_config_from_pretrained_config(config)
         
     | 
| 1534 | 
         
            +
                        # Initialize model (always on CPU to start with so we don't run out of GPU memory).
         
     | 
| 1535 | 
         
            +
                        model_config.init_device = "cpu"
         
     | 
| 1536 | 
         
            +
                        self.model = LLaDAModel(model_config, init_params=init_params)
         
     | 
| 1537 | 
         
            +
                    else:
         
     | 
| 1538 | 
         
            +
                        self.model = model
         
     | 
| 1539 | 
         
            +
             
     | 
| 1540 | 
         
            +
                def forward(
         
     | 
| 1541 | 
         
            +
                    self,
         
     | 
| 1542 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 1543 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1544 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1545 | 
         
            +
                    attention_bias: Optional[torch.Tensor] = None,
         
     | 
| 1546 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 1547 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1548 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1549 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1550 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1551 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1552 | 
         
            +
                    cache_position: Optional[Cache] = None,  # This is a hack mitigation of an issue in transformers `4.39.x`
         
     | 
| 1553 | 
         
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         
     | 
| 1554 | 
         
            +
                    max_seqlen: Optional[int] = None,
         
     | 
| 1555 | 
         
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         
     | 
| 1556 | 
         
            +
                    if use_cache is None:
         
     | 
| 1557 | 
         
            +
                        use_cache = self.config.use_cache
         
     | 
| 1558 | 
         
            +
             
     | 
| 1559 | 
         
            +
                    if output_attentions:
         
     | 
| 1560 | 
         
            +
                        raise ValueError("output_attentions is not yet supported in LLaDA")
         
     | 
| 1561 | 
         
            +
             
     | 
| 1562 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1563 | 
         
            +
             
     | 
| 1564 | 
         
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         
     | 
| 1565 | 
         
            +
                    outputs = self.model.forward(
         
     | 
| 1566 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 1567 | 
         
            +
                        input_embeddings=inputs_embeds,
         
     | 
| 1568 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1569 | 
         
            +
                        attention_bias=attention_bias,
         
     | 
| 1570 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1571 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1572 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1573 | 
         
            +
                        cu_seqlens=cu_seqlens,
         
     | 
| 1574 | 
         
            +
                        max_seqlen=max_seqlen,
         
     | 
| 1575 | 
         
            +
                    )
         
     | 
| 1576 | 
         
            +
             
     | 
| 1577 | 
         
            +
                    logits = outputs.logits
         
     | 
| 1578 | 
         
            +
                    hidden_states = outputs.hidden_states
         
     | 
| 1579 | 
         
            +
             
     | 
| 1580 | 
         
            +
                    loss = None
         
     | 
| 1581 | 
         
            +
                    if labels is not None:
         
     | 
| 1582 | 
         
            +
                        import warnings
         
     | 
| 1583 | 
         
            +
                        warnings.warn("Note that for LLaDA, you cannot calculate the loss here.", UserWarning)
         
     | 
| 1584 | 
         
            +
                    if not return_dict:
         
     | 
| 1585 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1586 | 
         
            +
                        return (loss,) + output if loss is not None else output
         
     | 
| 1587 | 
         
            +
             
     | 
| 1588 | 
         
            +
                    return CausalLMOutputWithPast(
         
     | 
| 1589 | 
         
            +
                        logits=logits,
         
     | 
| 1590 | 
         
            +
                        past_key_values=outputs.attn_key_values,
         
     | 
| 1591 | 
         
            +
                        hidden_states=hidden_states,
         
     | 
| 1592 | 
         
            +
                    )
         
     | 
| 1593 | 
         
            +
             
     | 
| 1594 | 
         
            +
                def can_generate(self) -> bool:
         
     | 
| 1595 | 
         
            +
                    return True
         
     | 
| 1596 | 
         
            +
             
     | 
| 1597 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 1598 | 
         
            +
                    self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
         
     | 
| 1599 | 
         
            +
                ):
         
     | 
| 1600 | 
         
            +
                    if past_key_values:
         
     | 
| 1601 | 
         
            +
                        # This is because we want the model to only process the last generated token.
         
     | 
| 1602 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 1603 | 
         
            +
                    model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
         
     | 
| 1604 | 
         
            +
             
     | 
| 1605 | 
         
            +
                    model_inputs.update(kwargs)
         
     | 
| 1606 | 
         
            +
                    model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
         
     | 
| 1607 | 
         
            +
                    return model_inputs
         
     | 
| 1608 | 
         
            +
             
     | 
| 1609 | 
         
            +
                # TODO: these are required to make the implementation complete.
         
     | 
| 1610 | 
         
            +
                # def resize_position_embeddings(self, new_num_position_embeddings: int):
         
     | 
| 1611 | 
         
            +
                #     pass
         
     | 
| 1612 | 
         
            +
                #
         
     | 
| 1613 | 
         
            +
                # def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
         
     | 
| 1614 | 
         
            +
                #     pass
         
     | 
| 1615 | 
         
            +
                #
         
     | 
| 1616 | 
         
            +
                # def _reorder_cache(self, past_key_values, beam_idx):
         
     | 
| 1617 | 
         
            +
                #     pass
         
     | 
| 1618 | 
         
            +
             
     | 
| 1619 | 
         
            +
                def get_input_embeddings(self) -> torch.nn.Module:
         
     | 
| 1620 | 
         
            +
                    return self.model.transformer.wte
         
     | 
| 1621 | 
         
            +
             
     | 
| 1622 | 
         
            +
                def set_input_embeddings(self, value: torch.nn.Module):
         
     | 
| 1623 | 
         
            +
                    self.model.transformer.wte = value
         
     | 
| 1624 | 
         
            +
             
     | 
| 1625 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1626 | 
         
            +
                    if self.config.weight_tying:
         
     | 
| 1627 | 
         
            +
                        return self.model.transformer.wte
         
     | 
| 1628 | 
         
            +
                    else:
         
     | 
| 1629 | 
         
            +
                        return self.model.transformer.ff_out
         
     | 
| 1630 | 
         
            +
             
     | 
| 1631 | 
         
            +
                def set_output_embeddings(self, value: torch.nn.Module):
         
     | 
| 1632 | 
         
            +
                    if self.config.weight_tying:
         
     | 
| 1633 | 
         
            +
                        self.model.transformer.wte = value
         
     | 
| 1634 | 
         
            +
                    else:
         
     | 
| 1635 | 
         
            +
                        self.model.transformer.ff_out = value
         
     | 
| 1636 | 
         
            +
             
     | 
| 1637 | 
         
            +
                def tie_weights(self):
         
     | 
| 1638 | 
         
            +
                    if self.config.weight_tying:
         
     | 
| 1639 | 
         
            +
                        self.model.transformer.ff_out = self.model.transformer.wte
         
     | 
| 1640 | 
         
            +
             
     | 
| 1641 | 
         
            +
            # Register the model so that it is available for transformer pipelines, auto-loading, etc.
         
     | 
| 1642 | 
         
            +
            AutoModel.register(LLaDAConfig, LLaDAModelLM)
         
     | 
    	
        tokenizer.json
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,2183 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "add_bos_token": false,
         
     | 
| 3 | 
         
            +
              "add_eos_token": false,
         
     | 
| 4 | 
         
            +
              "added_tokens_decoder": {
         
     | 
| 5 | 
         
            +
                "126080": {
         
     | 
| 6 | 
         
            +
                  "content": "<|startoftext|>",
         
     | 
| 7 | 
         
            +
                  "lstrip": false,
         
     | 
| 8 | 
         
            +
                  "normalized": false,
         
     | 
| 9 | 
         
            +
                  "rstrip": false,
         
     | 
| 10 | 
         
            +
                  "single_word": false,
         
     | 
| 11 | 
         
            +
                  "special": true
         
     | 
| 12 | 
         
            +
                },
         
     | 
| 13 | 
         
            +
                "126081": {
         
     | 
| 14 | 
         
            +
                  "content": "<|endoftext|>",
         
     | 
| 15 | 
         
            +
                  "lstrip": false,
         
     | 
| 16 | 
         
            +
                  "normalized": false,
         
     | 
| 17 | 
         
            +
                  "rstrip": false,
         
     | 
| 18 | 
         
            +
                  "single_word": false,
         
     | 
| 19 | 
         
            +
                  "special": true
         
     | 
| 20 | 
         
            +
                },
         
     | 
| 21 | 
         
            +
                "126082": {
         
     | 
| 22 | 
         
            +
                  "content": "[CLS]",
         
     | 
| 23 | 
         
            +
                  "lstrip": false,
         
     | 
| 24 | 
         
            +
                  "normalized": false,
         
     | 
| 25 | 
         
            +
                  "rstrip": false,
         
     | 
| 26 | 
         
            +
                  "single_word": false,
         
     | 
| 27 | 
         
            +
                  "special": true
         
     | 
| 28 | 
         
            +
                },
         
     | 
| 29 | 
         
            +
                "126083": {
         
     | 
| 30 | 
         
            +
                  "content": "[gMASK]",
         
     | 
| 31 | 
         
            +
                  "lstrip": false,
         
     | 
| 32 | 
         
            +
                  "normalized": false,
         
     | 
| 33 | 
         
            +
                  "rstrip": false,
         
     | 
| 34 | 
         
            +
                  "single_word": false,
         
     | 
| 35 | 
         
            +
                  "special": true
         
     | 
| 36 | 
         
            +
                },
         
     | 
| 37 | 
         
            +
                "126084": {
         
     | 
| 38 | 
         
            +
                  "content": "<|reserved_token_0|>",
         
     | 
| 39 | 
         
            +
                  "lstrip": false,
         
     | 
| 40 | 
         
            +
                  "normalized": false,
         
     | 
| 41 | 
         
            +
                  "rstrip": false,
         
     | 
| 42 | 
         
            +
                  "single_word": false,
         
     | 
| 43 | 
         
            +
                  "special": true
         
     | 
| 44 | 
         
            +
                },
         
     | 
| 45 | 
         
            +
                "126085": {
         
     | 
| 46 | 
         
            +
                  "content": "<|reserved_token_1|>",
         
     | 
| 47 | 
         
            +
                  "lstrip": false,
         
     | 
| 48 | 
         
            +
                  "normalized": false,
         
     | 
| 49 | 
         
            +
                  "rstrip": false,
         
     | 
| 50 | 
         
            +
                  "single_word": false,
         
     | 
| 51 | 
         
            +
                  "special": true
         
     | 
| 52 | 
         
            +
                },
         
     | 
| 53 | 
         
            +
                "126086": {
         
     | 
| 54 | 
         
            +
                  "content": "<|reserved_token_2|>",
         
     | 
| 55 | 
         
            +
                  "lstrip": false,
         
     | 
| 56 | 
         
            +
                  "normalized": false,
         
     | 
| 57 | 
         
            +
                  "rstrip": false,
         
     | 
| 58 | 
         
            +
                  "single_word": false,
         
     | 
| 59 | 
         
            +
                  "special": true
         
     | 
| 60 | 
         
            +
                },
         
     | 
| 61 | 
         
            +
                "126087": {
         
     | 
| 62 | 
         
            +
                  "content": "<|reserved_token_3|>",
         
     | 
| 63 | 
         
            +
                  "lstrip": false,
         
     | 
| 64 | 
         
            +
                  "normalized": false,
         
     | 
| 65 | 
         
            +
                  "rstrip": false,
         
     | 
| 66 | 
         
            +
                  "single_word": false,
         
     | 
| 67 | 
         
            +
                  "special": true
         
     | 
| 68 | 
         
            +
                },
         
     | 
| 69 | 
         
            +
                "126088": {
         
     | 
| 70 | 
         
            +
                  "content": "<|reserved_token_4|>",
         
     | 
| 71 | 
         
            +
                  "lstrip": false,
         
     | 
| 72 | 
         
            +
                  "normalized": false,
         
     | 
| 73 | 
         
            +
                  "rstrip": false,
         
     | 
| 74 | 
         
            +
                  "single_word": false,
         
     | 
| 75 | 
         
            +
                  "special": true
         
     | 
| 76 | 
         
            +
                },
         
     | 
| 77 | 
         
            +
                "126089": {
         
     | 
| 78 | 
         
            +
                  "content": "<|reserved_token_5|>",
         
     | 
| 79 | 
         
            +
                  "lstrip": false,
         
     | 
| 80 | 
         
            +
                  "normalized": false,
         
     | 
| 81 | 
         
            +
                  "rstrip": false,
         
     | 
| 82 | 
         
            +
                  "single_word": false,
         
     | 
| 83 | 
         
            +
                  "special": true
         
     | 
| 84 | 
         
            +
                },
         
     | 
| 85 | 
         
            +
                "126090": {
         
     | 
| 86 | 
         
            +
                  "content": "<|reserved_token_6|>",
         
     | 
| 87 | 
         
            +
                  "lstrip": false,
         
     | 
| 88 | 
         
            +
                  "normalized": false,
         
     | 
| 89 | 
         
            +
                  "rstrip": false,
         
     | 
| 90 | 
         
            +
                  "single_word": false,
         
     | 
| 91 | 
         
            +
                  "special": true
         
     | 
| 92 | 
         
            +
                },
         
     | 
| 93 | 
         
            +
                "126091": {
         
     | 
| 94 | 
         
            +
                  "content": "<|reserved_token_7|>",
         
     | 
| 95 | 
         
            +
                  "lstrip": false,
         
     | 
| 96 | 
         
            +
                  "normalized": false,
         
     | 
| 97 | 
         
            +
                  "rstrip": false,
         
     | 
| 98 | 
         
            +
                  "single_word": false,
         
     | 
| 99 | 
         
            +
                  "special": true
         
     | 
| 100 | 
         
            +
                },
         
     | 
| 101 | 
         
            +
                "126092": {
         
     | 
| 102 | 
         
            +
                  "content": "<|reserved_token_8|>",
         
     | 
| 103 | 
         
            +
                  "lstrip": false,
         
     | 
| 104 | 
         
            +
                  "normalized": false,
         
     | 
| 105 | 
         
            +
                  "rstrip": false,
         
     | 
| 106 | 
         
            +
                  "single_word": false,
         
     | 
| 107 | 
         
            +
                  "special": true
         
     | 
| 108 | 
         
            +
                },
         
     | 
| 109 | 
         
            +
                "126093": {
         
     | 
| 110 | 
         
            +
                  "content": "<|reserved_token_9|>",
         
     | 
| 111 | 
         
            +
                  "lstrip": false,
         
     | 
| 112 | 
         
            +
                  "normalized": false,
         
     | 
| 113 | 
         
            +
                  "rstrip": false,
         
     | 
| 114 | 
         
            +
                  "single_word": false,
         
     | 
| 115 | 
         
            +
                  "special": true
         
     | 
| 116 | 
         
            +
                },
         
     | 
| 117 | 
         
            +
                "126094": {
         
     | 
| 118 | 
         
            +
                  "content": "<|reserved_token_10|>",
         
     | 
| 119 | 
         
            +
                  "lstrip": false,
         
     | 
| 120 | 
         
            +
                  "normalized": false,
         
     | 
| 121 | 
         
            +
                  "rstrip": false,
         
     | 
| 122 | 
         
            +
                  "single_word": false,
         
     | 
| 123 | 
         
            +
                  "special": true
         
     | 
| 124 | 
         
            +
                },
         
     | 
| 125 | 
         
            +
                "126095": {
         
     | 
| 126 | 
         
            +
                  "content": "<|reserved_token_11|>",
         
     | 
| 127 | 
         
            +
                  "lstrip": false,
         
     | 
| 128 | 
         
            +
                  "normalized": false,
         
     | 
| 129 | 
         
            +
                  "rstrip": false,
         
     | 
| 130 | 
         
            +
                  "single_word": false,
         
     | 
| 131 | 
         
            +
                  "special": true
         
     | 
| 132 | 
         
            +
                },
         
     | 
| 133 | 
         
            +
                "126096": {
         
     | 
| 134 | 
         
            +
                  "content": "<|reserved_token_12|>",
         
     | 
| 135 | 
         
            +
                  "lstrip": false,
         
     | 
| 136 | 
         
            +
                  "normalized": false,
         
     | 
| 137 | 
         
            +
                  "rstrip": false,
         
     | 
| 138 | 
         
            +
                  "single_word": false,
         
     | 
| 139 | 
         
            +
                  "special": true
         
     | 
| 140 | 
         
            +
                },
         
     | 
| 141 | 
         
            +
                "126097": {
         
     | 
| 142 | 
         
            +
                  "content": "<|reserved_token_13|>",
         
     | 
| 143 | 
         
            +
                  "lstrip": false,
         
     | 
| 144 | 
         
            +
                  "normalized": false,
         
     | 
| 145 | 
         
            +
                  "rstrip": false,
         
     | 
| 146 | 
         
            +
                  "single_word": false,
         
     | 
| 147 | 
         
            +
                  "special": true
         
     | 
| 148 | 
         
            +
                },
         
     | 
| 149 | 
         
            +
                "126098": {
         
     | 
| 150 | 
         
            +
                  "content": "<|reserved_token_14|>",
         
     | 
| 151 | 
         
            +
                  "lstrip": false,
         
     | 
| 152 | 
         
            +
                  "normalized": false,
         
     | 
| 153 | 
         
            +
                  "rstrip": false,
         
     | 
| 154 | 
         
            +
                  "single_word": false,
         
     | 
| 155 | 
         
            +
                  "special": true
         
     | 
| 156 | 
         
            +
                },
         
     | 
| 157 | 
         
            +
                "126099": {
         
     | 
| 158 | 
         
            +
                  "content": "<|reserved_token_15|>",
         
     | 
| 159 | 
         
            +
                  "lstrip": false,
         
     | 
| 160 | 
         
            +
                  "normalized": false,
         
     | 
| 161 | 
         
            +
                  "rstrip": false,
         
     | 
| 162 | 
         
            +
                  "single_word": false,
         
     | 
| 163 | 
         
            +
                  "special": true
         
     | 
| 164 | 
         
            +
                },
         
     | 
| 165 | 
         
            +
                "126100": {
         
     | 
| 166 | 
         
            +
                  "content": "<|reserved_token_16|>",
         
     | 
| 167 | 
         
            +
                  "lstrip": false,
         
     | 
| 168 | 
         
            +
                  "normalized": false,
         
     | 
| 169 | 
         
            +
                  "rstrip": false,
         
     | 
| 170 | 
         
            +
                  "single_word": false,
         
     | 
| 171 | 
         
            +
                  "special": true
         
     | 
| 172 | 
         
            +
                },
         
     | 
| 173 | 
         
            +
                "126101": {
         
     | 
| 174 | 
         
            +
                  "content": "<|reserved_token_17|>",
         
     | 
| 175 | 
         
            +
                  "lstrip": false,
         
     | 
| 176 | 
         
            +
                  "normalized": false,
         
     | 
| 177 | 
         
            +
                  "rstrip": false,
         
     | 
| 178 | 
         
            +
                  "single_word": false,
         
     | 
| 179 | 
         
            +
                  "special": true
         
     | 
| 180 | 
         
            +
                },
         
     | 
| 181 | 
         
            +
                "126102": {
         
     | 
| 182 | 
         
            +
                  "content": "<|reserved_token_18|>",
         
     | 
| 183 | 
         
            +
                  "lstrip": false,
         
     | 
| 184 | 
         
            +
                  "normalized": false,
         
     | 
| 185 | 
         
            +
                  "rstrip": false,
         
     | 
| 186 | 
         
            +
                  "single_word": false,
         
     | 
| 187 | 
         
            +
                  "special": true
         
     | 
| 188 | 
         
            +
                },
         
     | 
| 189 | 
         
            +
                "126103": {
         
     | 
| 190 | 
         
            +
                  "content": "<|reserved_token_19|>",
         
     | 
| 191 | 
         
            +
                  "lstrip": false,
         
     | 
| 192 | 
         
            +
                  "normalized": false,
         
     | 
| 193 | 
         
            +
                  "rstrip": false,
         
     | 
| 194 | 
         
            +
                  "single_word": false,
         
     | 
| 195 | 
         
            +
                  "special": true
         
     | 
| 196 | 
         
            +
                },
         
     | 
| 197 | 
         
            +
                "126104": {
         
     | 
| 198 | 
         
            +
                  "content": "<|reserved_token_20|>",
         
     | 
| 199 | 
         
            +
                  "lstrip": false,
         
     | 
| 200 | 
         
            +
                  "normalized": false,
         
     | 
| 201 | 
         
            +
                  "rstrip": false,
         
     | 
| 202 | 
         
            +
                  "single_word": false,
         
     | 
| 203 | 
         
            +
                  "special": true
         
     | 
| 204 | 
         
            +
                },
         
     | 
| 205 | 
         
            +
                "126105": {
         
     | 
| 206 | 
         
            +
                  "content": "<|reserved_token_21|>",
         
     | 
| 207 | 
         
            +
                  "lstrip": false,
         
     | 
| 208 | 
         
            +
                  "normalized": false,
         
     | 
| 209 | 
         
            +
                  "rstrip": false,
         
     | 
| 210 | 
         
            +
                  "single_word": false,
         
     | 
| 211 | 
         
            +
                  "special": true
         
     | 
| 212 | 
         
            +
                },
         
     | 
| 213 | 
         
            +
                "126106": {
         
     | 
| 214 | 
         
            +
                  "content": "<|reserved_token_22|>",
         
     | 
| 215 | 
         
            +
                  "lstrip": false,
         
     | 
| 216 | 
         
            +
                  "normalized": false,
         
     | 
| 217 | 
         
            +
                  "rstrip": false,
         
     | 
| 218 | 
         
            +
                  "single_word": false,
         
     | 
| 219 | 
         
            +
                  "special": true
         
     | 
| 220 | 
         
            +
                },
         
     | 
| 221 | 
         
            +
                "126107": {
         
     | 
| 222 | 
         
            +
                  "content": "<|reserved_token_23|>",
         
     | 
| 223 | 
         
            +
                  "lstrip": false,
         
     | 
| 224 | 
         
            +
                  "normalized": false,
         
     | 
| 225 | 
         
            +
                  "rstrip": false,
         
     | 
| 226 | 
         
            +
                  "single_word": false,
         
     | 
| 227 | 
         
            +
                  "special": true
         
     | 
| 228 | 
         
            +
                },
         
     | 
| 229 | 
         
            +
                "126108": {
         
     | 
| 230 | 
         
            +
                  "content": "<|reserved_token_24|>",
         
     | 
| 231 | 
         
            +
                  "lstrip": false,
         
     | 
| 232 | 
         
            +
                  "normalized": false,
         
     | 
| 233 | 
         
            +
                  "rstrip": false,
         
     | 
| 234 | 
         
            +
                  "single_word": false,
         
     | 
| 235 | 
         
            +
                  "special": true
         
     | 
| 236 | 
         
            +
                },
         
     | 
| 237 | 
         
            +
                "126109": {
         
     | 
| 238 | 
         
            +
                  "content": "<|reserved_token_25|>",
         
     | 
| 239 | 
         
            +
                  "lstrip": false,
         
     | 
| 240 | 
         
            +
                  "normalized": false,
         
     | 
| 241 | 
         
            +
                  "rstrip": false,
         
     | 
| 242 | 
         
            +
                  "single_word": false,
         
     | 
| 243 | 
         
            +
                  "special": true
         
     | 
| 244 | 
         
            +
                },
         
     | 
| 245 | 
         
            +
                "126110": {
         
     | 
| 246 | 
         
            +
                  "content": "<|reserved_token_26|>",
         
     | 
| 247 | 
         
            +
                  "lstrip": false,
         
     | 
| 248 | 
         
            +
                  "normalized": false,
         
     | 
| 249 | 
         
            +
                  "rstrip": false,
         
     | 
| 250 | 
         
            +
                  "single_word": false,
         
     | 
| 251 | 
         
            +
                  "special": true
         
     | 
| 252 | 
         
            +
                },
         
     | 
| 253 | 
         
            +
                "126111": {
         
     | 
| 254 | 
         
            +
                  "content": "<|reserved_token_27|>",
         
     | 
| 255 | 
         
            +
                  "lstrip": false,
         
     | 
| 256 | 
         
            +
                  "normalized": false,
         
     | 
| 257 | 
         
            +
                  "rstrip": false,
         
     | 
| 258 | 
         
            +
                  "single_word": false,
         
     | 
| 259 | 
         
            +
                  "special": true
         
     | 
| 260 | 
         
            +
                },
         
     | 
| 261 | 
         
            +
                "126112": {
         
     | 
| 262 | 
         
            +
                  "content": "<|reserved_token_28|>",
         
     | 
| 263 | 
         
            +
                  "lstrip": false,
         
     | 
| 264 | 
         
            +
                  "normalized": false,
         
     | 
| 265 | 
         
            +
                  "rstrip": false,
         
     | 
| 266 | 
         
            +
                  "single_word": false,
         
     | 
| 267 | 
         
            +
                  "special": true
         
     | 
| 268 | 
         
            +
                },
         
     | 
| 269 | 
         
            +
                "126113": {
         
     | 
| 270 | 
         
            +
                  "content": "<|reserved_token_29|>",
         
     | 
| 271 | 
         
            +
                  "lstrip": false,
         
     | 
| 272 | 
         
            +
                  "normalized": false,
         
     | 
| 273 | 
         
            +
                  "rstrip": false,
         
     | 
| 274 | 
         
            +
                  "single_word": false,
         
     | 
| 275 | 
         
            +
                  "special": true
         
     | 
| 276 | 
         
            +
                },
         
     | 
| 277 | 
         
            +
                "126114": {
         
     | 
| 278 | 
         
            +
                  "content": "<|reserved_token_30|>",
         
     | 
| 279 | 
         
            +
                  "lstrip": false,
         
     | 
| 280 | 
         
            +
                  "normalized": false,
         
     | 
| 281 | 
         
            +
                  "rstrip": false,
         
     | 
| 282 | 
         
            +
                  "single_word": false,
         
     | 
| 283 | 
         
            +
                  "special": true
         
     | 
| 284 | 
         
            +
                },
         
     | 
| 285 | 
         
            +
                "126115": {
         
     | 
| 286 | 
         
            +
                  "content": "<|reserved_token_31|>",
         
     | 
| 287 | 
         
            +
                  "lstrip": false,
         
     | 
| 288 | 
         
            +
                  "normalized": false,
         
     | 
| 289 | 
         
            +
                  "rstrip": false,
         
     | 
| 290 | 
         
            +
                  "single_word": false,
         
     | 
| 291 | 
         
            +
                  "special": true
         
     | 
| 292 | 
         
            +
                },
         
     | 
| 293 | 
         
            +
                "126116": {
         
     | 
| 294 | 
         
            +
                  "content": "<|reserved_token_32|>",
         
     | 
| 295 | 
         
            +
                  "lstrip": false,
         
     | 
| 296 | 
         
            +
                  "normalized": false,
         
     | 
| 297 | 
         
            +
                  "rstrip": false,
         
     | 
| 298 | 
         
            +
                  "single_word": false,
         
     | 
| 299 | 
         
            +
                  "special": true
         
     | 
| 300 | 
         
            +
                },
         
     | 
| 301 | 
         
            +
                "126117": {
         
     | 
| 302 | 
         
            +
                  "content": "<|reserved_token_33|>",
         
     | 
| 303 | 
         
            +
                  "lstrip": false,
         
     | 
| 304 | 
         
            +
                  "normalized": false,
         
     | 
| 305 | 
         
            +
                  "rstrip": false,
         
     | 
| 306 | 
         
            +
                  "single_word": false,
         
     | 
| 307 | 
         
            +
                  "special": true
         
     | 
| 308 | 
         
            +
                },
         
     | 
| 309 | 
         
            +
                "126118": {
         
     | 
| 310 | 
         
            +
                  "content": "<|reserved_token_34|>",
         
     | 
| 311 | 
         
            +
                  "lstrip": false,
         
     | 
| 312 | 
         
            +
                  "normalized": false,
         
     | 
| 313 | 
         
            +
                  "rstrip": false,
         
     | 
| 314 | 
         
            +
                  "single_word": false,
         
     | 
| 315 | 
         
            +
                  "special": true
         
     | 
| 316 | 
         
            +
                },
         
     | 
| 317 | 
         
            +
                "126119": {
         
     | 
| 318 | 
         
            +
                  "content": "<|reserved_token_35|>",
         
     | 
| 319 | 
         
            +
                  "lstrip": false,
         
     | 
| 320 | 
         
            +
                  "normalized": false,
         
     | 
| 321 | 
         
            +
                  "rstrip": false,
         
     | 
| 322 | 
         
            +
                  "single_word": false,
         
     | 
| 323 | 
         
            +
                  "special": true
         
     | 
| 324 | 
         
            +
                },
         
     | 
| 325 | 
         
            +
                "126120": {
         
     | 
| 326 | 
         
            +
                  "content": "<|reserved_token_36|>",
         
     | 
| 327 | 
         
            +
                  "lstrip": false,
         
     | 
| 328 | 
         
            +
                  "normalized": false,
         
     | 
| 329 | 
         
            +
                  "rstrip": false,
         
     | 
| 330 | 
         
            +
                  "single_word": false,
         
     | 
| 331 | 
         
            +
                  "special": true
         
     | 
| 332 | 
         
            +
                },
         
     | 
| 333 | 
         
            +
                "126121": {
         
     | 
| 334 | 
         
            +
                  "content": "<|reserved_token_37|>",
         
     | 
| 335 | 
         
            +
                  "lstrip": false,
         
     | 
| 336 | 
         
            +
                  "normalized": false,
         
     | 
| 337 | 
         
            +
                  "rstrip": false,
         
     | 
| 338 | 
         
            +
                  "single_word": false,
         
     | 
| 339 | 
         
            +
                  "special": true
         
     | 
| 340 | 
         
            +
                },
         
     | 
| 341 | 
         
            +
                "126122": {
         
     | 
| 342 | 
         
            +
                  "content": "<|reserved_token_38|>",
         
     | 
| 343 | 
         
            +
                  "lstrip": false,
         
     | 
| 344 | 
         
            +
                  "normalized": false,
         
     | 
| 345 | 
         
            +
                  "rstrip": false,
         
     | 
| 346 | 
         
            +
                  "single_word": false,
         
     | 
| 347 | 
         
            +
                  "special": true
         
     | 
| 348 | 
         
            +
                },
         
     | 
| 349 | 
         
            +
                "126123": {
         
     | 
| 350 | 
         
            +
                  "content": "<|reserved_token_39|>",
         
     | 
| 351 | 
         
            +
                  "lstrip": false,
         
     | 
| 352 | 
         
            +
                  "normalized": false,
         
     | 
| 353 | 
         
            +
                  "rstrip": false,
         
     | 
| 354 | 
         
            +
                  "single_word": false,
         
     | 
| 355 | 
         
            +
                  "special": true
         
     | 
| 356 | 
         
            +
                },
         
     | 
| 357 | 
         
            +
                "126124": {
         
     | 
| 358 | 
         
            +
                  "content": "<|reserved_token_40|>",
         
     | 
| 359 | 
         
            +
                  "lstrip": false,
         
     | 
| 360 | 
         
            +
                  "normalized": false,
         
     | 
| 361 | 
         
            +
                  "rstrip": false,
         
     | 
| 362 | 
         
            +
                  "single_word": false,
         
     | 
| 363 | 
         
            +
                  "special": true
         
     | 
| 364 | 
         
            +
                },
         
     | 
| 365 | 
         
            +
                "126125": {
         
     | 
| 366 | 
         
            +
                  "content": "<|reserved_token_41|>",
         
     | 
| 367 | 
         
            +
                  "lstrip": false,
         
     | 
| 368 | 
         
            +
                  "normalized": false,
         
     | 
| 369 | 
         
            +
                  "rstrip": false,
         
     | 
| 370 | 
         
            +
                  "single_word": false,
         
     | 
| 371 | 
         
            +
                  "special": true
         
     | 
| 372 | 
         
            +
                },
         
     | 
| 373 | 
         
            +
                "126126": {
         
     | 
| 374 | 
         
            +
                  "content": "<|reserved_token_42|>",
         
     | 
| 375 | 
         
            +
                  "lstrip": false,
         
     | 
| 376 | 
         
            +
                  "normalized": false,
         
     | 
| 377 | 
         
            +
                  "rstrip": false,
         
     | 
| 378 | 
         
            +
                  "single_word": false,
         
     | 
| 379 | 
         
            +
                  "special": true
         
     | 
| 380 | 
         
            +
                },
         
     | 
| 381 | 
         
            +
                "126127": {
         
     | 
| 382 | 
         
            +
                  "content": "<|reserved_token_43|>",
         
     | 
| 383 | 
         
            +
                  "lstrip": false,
         
     | 
| 384 | 
         
            +
                  "normalized": false,
         
     | 
| 385 | 
         
            +
                  "rstrip": false,
         
     | 
| 386 | 
         
            +
                  "single_word": false,
         
     | 
| 387 | 
         
            +
                  "special": true
         
     | 
| 388 | 
         
            +
                },
         
     | 
| 389 | 
         
            +
                "126128": {
         
     | 
| 390 | 
         
            +
                  "content": "<|reserved_token_44|>",
         
     | 
| 391 | 
         
            +
                  "lstrip": false,
         
     | 
| 392 | 
         
            +
                  "normalized": false,
         
     | 
| 393 | 
         
            +
                  "rstrip": false,
         
     | 
| 394 | 
         
            +
                  "single_word": false,
         
     | 
| 395 | 
         
            +
                  "special": true
         
     | 
| 396 | 
         
            +
                },
         
     | 
| 397 | 
         
            +
                "126129": {
         
     | 
| 398 | 
         
            +
                  "content": "<|reserved_token_45|>",
         
     | 
| 399 | 
         
            +
                  "lstrip": false,
         
     | 
| 400 | 
         
            +
                  "normalized": false,
         
     | 
| 401 | 
         
            +
                  "rstrip": false,
         
     | 
| 402 | 
         
            +
                  "single_word": false,
         
     | 
| 403 | 
         
            +
                  "special": true
         
     | 
| 404 | 
         
            +
                },
         
     | 
| 405 | 
         
            +
                "126130": {
         
     | 
| 406 | 
         
            +
                  "content": "<|reserved_token_46|>",
         
     | 
| 407 | 
         
            +
                  "lstrip": false,
         
     | 
| 408 | 
         
            +
                  "normalized": false,
         
     | 
| 409 | 
         
            +
                  "rstrip": false,
         
     | 
| 410 | 
         
            +
                  "single_word": false,
         
     | 
| 411 | 
         
            +
                  "special": true
         
     | 
| 412 | 
         
            +
                },
         
     | 
| 413 | 
         
            +
                "126131": {
         
     | 
| 414 | 
         
            +
                  "content": "<|reserved_token_47|>",
         
     | 
| 415 | 
         
            +
                  "lstrip": false,
         
     | 
| 416 | 
         
            +
                  "normalized": false,
         
     | 
| 417 | 
         
            +
                  "rstrip": false,
         
     | 
| 418 | 
         
            +
                  "single_word": false,
         
     | 
| 419 | 
         
            +
                  "special": true
         
     | 
| 420 | 
         
            +
                },
         
     | 
| 421 | 
         
            +
                "126132": {
         
     | 
| 422 | 
         
            +
                  "content": "<|reserved_token_48|>",
         
     | 
| 423 | 
         
            +
                  "lstrip": false,
         
     | 
| 424 | 
         
            +
                  "normalized": false,
         
     | 
| 425 | 
         
            +
                  "rstrip": false,
         
     | 
| 426 | 
         
            +
                  "single_word": false,
         
     | 
| 427 | 
         
            +
                  "special": true
         
     | 
| 428 | 
         
            +
                },
         
     | 
| 429 | 
         
            +
                "126133": {
         
     | 
| 430 | 
         
            +
                  "content": "<|reserved_token_49|>",
         
     | 
| 431 | 
         
            +
                  "lstrip": false,
         
     | 
| 432 | 
         
            +
                  "normalized": false,
         
     | 
| 433 | 
         
            +
                  "rstrip": false,
         
     | 
| 434 | 
         
            +
                  "single_word": false,
         
     | 
| 435 | 
         
            +
                  "special": true
         
     | 
| 436 | 
         
            +
                },
         
     | 
| 437 | 
         
            +
                "126134": {
         
     | 
| 438 | 
         
            +
                  "content": "<|reserved_token_50|>",
         
     | 
| 439 | 
         
            +
                  "lstrip": false,
         
     | 
| 440 | 
         
            +
                  "normalized": false,
         
     | 
| 441 | 
         
            +
                  "rstrip": false,
         
     | 
| 442 | 
         
            +
                  "single_word": false,
         
     | 
| 443 | 
         
            +
                  "special": true
         
     | 
| 444 | 
         
            +
                },
         
     | 
| 445 | 
         
            +
                "126135": {
         
     | 
| 446 | 
         
            +
                  "content": "<|reserved_token_51|>",
         
     | 
| 447 | 
         
            +
                  "lstrip": false,
         
     | 
| 448 | 
         
            +
                  "normalized": false,
         
     | 
| 449 | 
         
            +
                  "rstrip": false,
         
     | 
| 450 | 
         
            +
                  "single_word": false,
         
     | 
| 451 | 
         
            +
                  "special": true
         
     | 
| 452 | 
         
            +
                },
         
     | 
| 453 | 
         
            +
                "126136": {
         
     | 
| 454 | 
         
            +
                  "content": "<|reserved_token_52|>",
         
     | 
| 455 | 
         
            +
                  "lstrip": false,
         
     | 
| 456 | 
         
            +
                  "normalized": false,
         
     | 
| 457 | 
         
            +
                  "rstrip": false,
         
     | 
| 458 | 
         
            +
                  "single_word": false,
         
     | 
| 459 | 
         
            +
                  "special": true
         
     | 
| 460 | 
         
            +
                },
         
     | 
| 461 | 
         
            +
                "126137": {
         
     | 
| 462 | 
         
            +
                  "content": "<|reserved_token_53|>",
         
     | 
| 463 | 
         
            +
                  "lstrip": false,
         
     | 
| 464 | 
         
            +
                  "normalized": false,
         
     | 
| 465 | 
         
            +
                  "rstrip": false,
         
     | 
| 466 | 
         
            +
                  "single_word": false,
         
     | 
| 467 | 
         
            +
                  "special": true
         
     | 
| 468 | 
         
            +
                },
         
     | 
| 469 | 
         
            +
                "126138": {
         
     | 
| 470 | 
         
            +
                  "content": "<|reserved_token_54|>",
         
     | 
| 471 | 
         
            +
                  "lstrip": false,
         
     | 
| 472 | 
         
            +
                  "normalized": false,
         
     | 
| 473 | 
         
            +
                  "rstrip": false,
         
     | 
| 474 | 
         
            +
                  "single_word": false,
         
     | 
| 475 | 
         
            +
                  "special": true
         
     | 
| 476 | 
         
            +
                },
         
     | 
| 477 | 
         
            +
                "126139": {
         
     | 
| 478 | 
         
            +
                  "content": "<|reserved_token_55|>",
         
     | 
| 479 | 
         
            +
                  "lstrip": false,
         
     | 
| 480 | 
         
            +
                  "normalized": false,
         
     | 
| 481 | 
         
            +
                  "rstrip": false,
         
     | 
| 482 | 
         
            +
                  "single_word": false,
         
     | 
| 483 | 
         
            +
                  "special": true
         
     | 
| 484 | 
         
            +
                },
         
     | 
| 485 | 
         
            +
                "126140": {
         
     | 
| 486 | 
         
            +
                  "content": "<|reserved_token_56|>",
         
     | 
| 487 | 
         
            +
                  "lstrip": false,
         
     | 
| 488 | 
         
            +
                  "normalized": false,
         
     | 
| 489 | 
         
            +
                  "rstrip": false,
         
     | 
| 490 | 
         
            +
                  "single_word": false,
         
     | 
| 491 | 
         
            +
                  "special": true
         
     | 
| 492 | 
         
            +
                },
         
     | 
| 493 | 
         
            +
                "126141": {
         
     | 
| 494 | 
         
            +
                  "content": "<|reserved_token_57|>",
         
     | 
| 495 | 
         
            +
                  "lstrip": false,
         
     | 
| 496 | 
         
            +
                  "normalized": false,
         
     | 
| 497 | 
         
            +
                  "rstrip": false,
         
     | 
| 498 | 
         
            +
                  "single_word": false,
         
     | 
| 499 | 
         
            +
                  "special": true
         
     | 
| 500 | 
         
            +
                },
         
     | 
| 501 | 
         
            +
                "126142": {
         
     | 
| 502 | 
         
            +
                  "content": "<|reserved_token_58|>",
         
     | 
| 503 | 
         
            +
                  "lstrip": false,
         
     | 
| 504 | 
         
            +
                  "normalized": false,
         
     | 
| 505 | 
         
            +
                  "rstrip": false,
         
     | 
| 506 | 
         
            +
                  "single_word": false,
         
     | 
| 507 | 
         
            +
                  "special": true
         
     | 
| 508 | 
         
            +
                },
         
     | 
| 509 | 
         
            +
                "126143": {
         
     | 
| 510 | 
         
            +
                  "content": "<|reserved_token_59|>",
         
     | 
| 511 | 
         
            +
                  "lstrip": false,
         
     | 
| 512 | 
         
            +
                  "normalized": false,
         
     | 
| 513 | 
         
            +
                  "rstrip": false,
         
     | 
| 514 | 
         
            +
                  "single_word": false,
         
     | 
| 515 | 
         
            +
                  "special": true
         
     | 
| 516 | 
         
            +
                },
         
     | 
| 517 | 
         
            +
                "126144": {
         
     | 
| 518 | 
         
            +
                  "content": "<|reserved_token_60|>",
         
     | 
| 519 | 
         
            +
                  "lstrip": false,
         
     | 
| 520 | 
         
            +
                  "normalized": false,
         
     | 
| 521 | 
         
            +
                  "rstrip": false,
         
     | 
| 522 | 
         
            +
                  "single_word": false,
         
     | 
| 523 | 
         
            +
                  "special": true
         
     | 
| 524 | 
         
            +
                },
         
     | 
| 525 | 
         
            +
                "126145": {
         
     | 
| 526 | 
         
            +
                  "content": "<|reserved_token_61|>",
         
     | 
| 527 | 
         
            +
                  "lstrip": false,
         
     | 
| 528 | 
         
            +
                  "normalized": false,
         
     | 
| 529 | 
         
            +
                  "rstrip": false,
         
     | 
| 530 | 
         
            +
                  "single_word": false,
         
     | 
| 531 | 
         
            +
                  "special": true
         
     | 
| 532 | 
         
            +
                },
         
     | 
| 533 | 
         
            +
                "126146": {
         
     | 
| 534 | 
         
            +
                  "content": "<|reserved_token_62|>",
         
     | 
| 535 | 
         
            +
                  "lstrip": false,
         
     | 
| 536 | 
         
            +
                  "normalized": false,
         
     | 
| 537 | 
         
            +
                  "rstrip": false,
         
     | 
| 538 | 
         
            +
                  "single_word": false,
         
     | 
| 539 | 
         
            +
                  "special": true
         
     | 
| 540 | 
         
            +
                },
         
     | 
| 541 | 
         
            +
                "126147": {
         
     | 
| 542 | 
         
            +
                  "content": "<|reserved_token_63|>",
         
     | 
| 543 | 
         
            +
                  "lstrip": false,
         
     | 
| 544 | 
         
            +
                  "normalized": false,
         
     | 
| 545 | 
         
            +
                  "rstrip": false,
         
     | 
| 546 | 
         
            +
                  "single_word": false,
         
     | 
| 547 | 
         
            +
                  "special": true
         
     | 
| 548 | 
         
            +
                },
         
     | 
| 549 | 
         
            +
                "126148": {
         
     | 
| 550 | 
         
            +
                  "content": "<|reserved_token_64|>",
         
     | 
| 551 | 
         
            +
                  "lstrip": false,
         
     | 
| 552 | 
         
            +
                  "normalized": false,
         
     | 
| 553 | 
         
            +
                  "rstrip": false,
         
     | 
| 554 | 
         
            +
                  "single_word": false,
         
     | 
| 555 | 
         
            +
                  "special": true
         
     | 
| 556 | 
         
            +
                },
         
     | 
| 557 | 
         
            +
                "126149": {
         
     | 
| 558 | 
         
            +
                  "content": "<|reserved_token_65|>",
         
     | 
| 559 | 
         
            +
                  "lstrip": false,
         
     | 
| 560 | 
         
            +
                  "normalized": false,
         
     | 
| 561 | 
         
            +
                  "rstrip": false,
         
     | 
| 562 | 
         
            +
                  "single_word": false,
         
     | 
| 563 | 
         
            +
                  "special": true
         
     | 
| 564 | 
         
            +
                },
         
     | 
| 565 | 
         
            +
                "126150": {
         
     | 
| 566 | 
         
            +
                  "content": "<|reserved_token_66|>",
         
     | 
| 567 | 
         
            +
                  "lstrip": false,
         
     | 
| 568 | 
         
            +
                  "normalized": false,
         
     | 
| 569 | 
         
            +
                  "rstrip": false,
         
     | 
| 570 | 
         
            +
                  "single_word": false,
         
     | 
| 571 | 
         
            +
                  "special": true
         
     | 
| 572 | 
         
            +
                },
         
     | 
| 573 | 
         
            +
                "126151": {
         
     | 
| 574 | 
         
            +
                  "content": "<|reserved_token_67|>",
         
     | 
| 575 | 
         
            +
                  "lstrip": false,
         
     | 
| 576 | 
         
            +
                  "normalized": false,
         
     | 
| 577 | 
         
            +
                  "rstrip": false,
         
     | 
| 578 | 
         
            +
                  "single_word": false,
         
     | 
| 579 | 
         
            +
                  "special": true
         
     | 
| 580 | 
         
            +
                },
         
     | 
| 581 | 
         
            +
                "126152": {
         
     | 
| 582 | 
         
            +
                  "content": "<|reserved_token_68|>",
         
     | 
| 583 | 
         
            +
                  "lstrip": false,
         
     | 
| 584 | 
         
            +
                  "normalized": false,
         
     | 
| 585 | 
         
            +
                  "rstrip": false,
         
     | 
| 586 | 
         
            +
                  "single_word": false,
         
     | 
| 587 | 
         
            +
                  "special": true
         
     | 
| 588 | 
         
            +
                },
         
     | 
| 589 | 
         
            +
                "126153": {
         
     | 
| 590 | 
         
            +
                  "content": "<|reserved_token_69|>",
         
     | 
| 591 | 
         
            +
                  "lstrip": false,
         
     | 
| 592 | 
         
            +
                  "normalized": false,
         
     | 
| 593 | 
         
            +
                  "rstrip": false,
         
     | 
| 594 | 
         
            +
                  "single_word": false,
         
     | 
| 595 | 
         
            +
                  "special": true
         
     | 
| 596 | 
         
            +
                },
         
     | 
| 597 | 
         
            +
                "126154": {
         
     | 
| 598 | 
         
            +
                  "content": "<|reserved_token_70|>",
         
     | 
| 599 | 
         
            +
                  "lstrip": false,
         
     | 
| 600 | 
         
            +
                  "normalized": false,
         
     | 
| 601 | 
         
            +
                  "rstrip": false,
         
     | 
| 602 | 
         
            +
                  "single_word": false,
         
     | 
| 603 | 
         
            +
                  "special": true
         
     | 
| 604 | 
         
            +
                },
         
     | 
| 605 | 
         
            +
                "126155": {
         
     | 
| 606 | 
         
            +
                  "content": "<|reserved_token_71|>",
         
     | 
| 607 | 
         
            +
                  "lstrip": false,
         
     | 
| 608 | 
         
            +
                  "normalized": false,
         
     | 
| 609 | 
         
            +
                  "rstrip": false,
         
     | 
| 610 | 
         
            +
                  "single_word": false,
         
     | 
| 611 | 
         
            +
                  "special": true
         
     | 
| 612 | 
         
            +
                },
         
     | 
| 613 | 
         
            +
                "126156": {
         
     | 
| 614 | 
         
            +
                  "content": "<|reserved_token_72|>",
         
     | 
| 615 | 
         
            +
                  "lstrip": false,
         
     | 
| 616 | 
         
            +
                  "normalized": false,
         
     | 
| 617 | 
         
            +
                  "rstrip": false,
         
     | 
| 618 | 
         
            +
                  "single_word": false,
         
     | 
| 619 | 
         
            +
                  "special": true
         
     | 
| 620 | 
         
            +
                },
         
     | 
| 621 | 
         
            +
                "126157": {
         
     | 
| 622 | 
         
            +
                  "content": "<|reserved_token_73|>",
         
     | 
| 623 | 
         
            +
                  "lstrip": false,
         
     | 
| 624 | 
         
            +
                  "normalized": false,
         
     | 
| 625 | 
         
            +
                  "rstrip": false,
         
     | 
| 626 | 
         
            +
                  "single_word": false,
         
     | 
| 627 | 
         
            +
                  "special": true
         
     | 
| 628 | 
         
            +
                },
         
     | 
| 629 | 
         
            +
                "126158": {
         
     | 
| 630 | 
         
            +
                  "content": "<|reserved_token_74|>",
         
     | 
| 631 | 
         
            +
                  "lstrip": false,
         
     | 
| 632 | 
         
            +
                  "normalized": false,
         
     | 
| 633 | 
         
            +
                  "rstrip": false,
         
     | 
| 634 | 
         
            +
                  "single_word": false,
         
     | 
| 635 | 
         
            +
                  "special": true
         
     | 
| 636 | 
         
            +
                },
         
     | 
| 637 | 
         
            +
                "126159": {
         
     | 
| 638 | 
         
            +
                  "content": "<|reserved_token_75|>",
         
     | 
| 639 | 
         
            +
                  "lstrip": false,
         
     | 
| 640 | 
         
            +
                  "normalized": false,
         
     | 
| 641 | 
         
            +
                  "rstrip": false,
         
     | 
| 642 | 
         
            +
                  "single_word": false,
         
     | 
| 643 | 
         
            +
                  "special": true
         
     | 
| 644 | 
         
            +
                },
         
     | 
| 645 | 
         
            +
                "126160": {
         
     | 
| 646 | 
         
            +
                  "content": "<|reserved_token_76|>",
         
     | 
| 647 | 
         
            +
                  "lstrip": false,
         
     | 
| 648 | 
         
            +
                  "normalized": false,
         
     | 
| 649 | 
         
            +
                  "rstrip": false,
         
     | 
| 650 | 
         
            +
                  "single_word": false,
         
     | 
| 651 | 
         
            +
                  "special": true
         
     | 
| 652 | 
         
            +
                },
         
     | 
| 653 | 
         
            +
                "126161": {
         
     | 
| 654 | 
         
            +
                  "content": "<|reserved_token_77|>",
         
     | 
| 655 | 
         
            +
                  "lstrip": false,
         
     | 
| 656 | 
         
            +
                  "normalized": false,
         
     | 
| 657 | 
         
            +
                  "rstrip": false,
         
     | 
| 658 | 
         
            +
                  "single_word": false,
         
     | 
| 659 | 
         
            +
                  "special": true
         
     | 
| 660 | 
         
            +
                },
         
     | 
| 661 | 
         
            +
                "126162": {
         
     | 
| 662 | 
         
            +
                  "content": "<|reserved_token_78|>",
         
     | 
| 663 | 
         
            +
                  "lstrip": false,
         
     | 
| 664 | 
         
            +
                  "normalized": false,
         
     | 
| 665 | 
         
            +
                  "rstrip": false,
         
     | 
| 666 | 
         
            +
                  "single_word": false,
         
     | 
| 667 | 
         
            +
                  "special": true
         
     | 
| 668 | 
         
            +
                },
         
     | 
| 669 | 
         
            +
                "126163": {
         
     | 
| 670 | 
         
            +
                  "content": "<|reserved_token_79|>",
         
     | 
| 671 | 
         
            +
                  "lstrip": false,
         
     | 
| 672 | 
         
            +
                  "normalized": false,
         
     | 
| 673 | 
         
            +
                  "rstrip": false,
         
     | 
| 674 | 
         
            +
                  "single_word": false,
         
     | 
| 675 | 
         
            +
                  "special": true
         
     | 
| 676 | 
         
            +
                },
         
     | 
| 677 | 
         
            +
                "126164": {
         
     | 
| 678 | 
         
            +
                  "content": "<|reserved_token_80|>",
         
     | 
| 679 | 
         
            +
                  "lstrip": false,
         
     | 
| 680 | 
         
            +
                  "normalized": false,
         
     | 
| 681 | 
         
            +
                  "rstrip": false,
         
     | 
| 682 | 
         
            +
                  "single_word": false,
         
     | 
| 683 | 
         
            +
                  "special": true
         
     | 
| 684 | 
         
            +
                },
         
     | 
| 685 | 
         
            +
                "126165": {
         
     | 
| 686 | 
         
            +
                  "content": "<|reserved_token_81|>",
         
     | 
| 687 | 
         
            +
                  "lstrip": false,
         
     | 
| 688 | 
         
            +
                  "normalized": false,
         
     | 
| 689 | 
         
            +
                  "rstrip": false,
         
     | 
| 690 | 
         
            +
                  "single_word": false,
         
     | 
| 691 | 
         
            +
                  "special": true
         
     | 
| 692 | 
         
            +
                },
         
     | 
| 693 | 
         
            +
                "126166": {
         
     | 
| 694 | 
         
            +
                  "content": "<|reserved_token_82|>",
         
     | 
| 695 | 
         
            +
                  "lstrip": false,
         
     | 
| 696 | 
         
            +
                  "normalized": false,
         
     | 
| 697 | 
         
            +
                  "rstrip": false,
         
     | 
| 698 | 
         
            +
                  "single_word": false,
         
     | 
| 699 | 
         
            +
                  "special": true
         
     | 
| 700 | 
         
            +
                },
         
     | 
| 701 | 
         
            +
                "126167": {
         
     | 
| 702 | 
         
            +
                  "content": "<|reserved_token_83|>",
         
     | 
| 703 | 
         
            +
                  "lstrip": false,
         
     | 
| 704 | 
         
            +
                  "normalized": false,
         
     | 
| 705 | 
         
            +
                  "rstrip": false,
         
     | 
| 706 | 
         
            +
                  "single_word": false,
         
     | 
| 707 | 
         
            +
                  "special": true
         
     | 
| 708 | 
         
            +
                },
         
     | 
| 709 | 
         
            +
                "126168": {
         
     | 
| 710 | 
         
            +
                  "content": "<|reserved_token_84|>",
         
     | 
| 711 | 
         
            +
                  "lstrip": false,
         
     | 
| 712 | 
         
            +
                  "normalized": false,
         
     | 
| 713 | 
         
            +
                  "rstrip": false,
         
     | 
| 714 | 
         
            +
                  "single_word": false,
         
     | 
| 715 | 
         
            +
                  "special": true
         
     | 
| 716 | 
         
            +
                },
         
     | 
| 717 | 
         
            +
                "126169": {
         
     | 
| 718 | 
         
            +
                  "content": "<|reserved_token_85|>",
         
     | 
| 719 | 
         
            +
                  "lstrip": false,
         
     | 
| 720 | 
         
            +
                  "normalized": false,
         
     | 
| 721 | 
         
            +
                  "rstrip": false,
         
     | 
| 722 | 
         
            +
                  "single_word": false,
         
     | 
| 723 | 
         
            +
                  "special": true
         
     | 
| 724 | 
         
            +
                },
         
     | 
| 725 | 
         
            +
                "126170": {
         
     | 
| 726 | 
         
            +
                  "content": "<|reserved_token_86|>",
         
     | 
| 727 | 
         
            +
                  "lstrip": false,
         
     | 
| 728 | 
         
            +
                  "normalized": false,
         
     | 
| 729 | 
         
            +
                  "rstrip": false,
         
     | 
| 730 | 
         
            +
                  "single_word": false,
         
     | 
| 731 | 
         
            +
                  "special": true
         
     | 
| 732 | 
         
            +
                },
         
     | 
| 733 | 
         
            +
                "126171": {
         
     | 
| 734 | 
         
            +
                  "content": "<|reserved_token_87|>",
         
     | 
| 735 | 
         
            +
                  "lstrip": false,
         
     | 
| 736 | 
         
            +
                  "normalized": false,
         
     | 
| 737 | 
         
            +
                  "rstrip": false,
         
     | 
| 738 | 
         
            +
                  "single_word": false,
         
     | 
| 739 | 
         
            +
                  "special": true
         
     | 
| 740 | 
         
            +
                },
         
     | 
| 741 | 
         
            +
                "126172": {
         
     | 
| 742 | 
         
            +
                  "content": "<|reserved_token_88|>",
         
     | 
| 743 | 
         
            +
                  "lstrip": false,
         
     | 
| 744 | 
         
            +
                  "normalized": false,
         
     | 
| 745 | 
         
            +
                  "rstrip": false,
         
     | 
| 746 | 
         
            +
                  "single_word": false,
         
     | 
| 747 | 
         
            +
                  "special": true
         
     | 
| 748 | 
         
            +
                },
         
     | 
| 749 | 
         
            +
                "126173": {
         
     | 
| 750 | 
         
            +
                  "content": "<|reserved_token_89|>",
         
     | 
| 751 | 
         
            +
                  "lstrip": false,
         
     | 
| 752 | 
         
            +
                  "normalized": false,
         
     | 
| 753 | 
         
            +
                  "rstrip": false,
         
     | 
| 754 | 
         
            +
                  "single_word": false,
         
     | 
| 755 | 
         
            +
                  "special": true
         
     | 
| 756 | 
         
            +
                },
         
     | 
| 757 | 
         
            +
                "126174": {
         
     | 
| 758 | 
         
            +
                  "content": "<|reserved_token_90|>",
         
     | 
| 759 | 
         
            +
                  "lstrip": false,
         
     | 
| 760 | 
         
            +
                  "normalized": false,
         
     | 
| 761 | 
         
            +
                  "rstrip": false,
         
     | 
| 762 | 
         
            +
                  "single_word": false,
         
     | 
| 763 | 
         
            +
                  "special": true
         
     | 
| 764 | 
         
            +
                },
         
     | 
| 765 | 
         
            +
                "126175": {
         
     | 
| 766 | 
         
            +
                  "content": "<|reserved_token_91|>",
         
     | 
| 767 | 
         
            +
                  "lstrip": false,
         
     | 
| 768 | 
         
            +
                  "normalized": false,
         
     | 
| 769 | 
         
            +
                  "rstrip": false,
         
     | 
| 770 | 
         
            +
                  "single_word": false,
         
     | 
| 771 | 
         
            +
                  "special": true
         
     | 
| 772 | 
         
            +
                },
         
     | 
| 773 | 
         
            +
                "126176": {
         
     | 
| 774 | 
         
            +
                  "content": "<|reserved_token_92|>",
         
     | 
| 775 | 
         
            +
                  "lstrip": false,
         
     | 
| 776 | 
         
            +
                  "normalized": false,
         
     | 
| 777 | 
         
            +
                  "rstrip": false,
         
     | 
| 778 | 
         
            +
                  "single_word": false,
         
     | 
| 779 | 
         
            +
                  "special": true
         
     | 
| 780 | 
         
            +
                },
         
     | 
| 781 | 
         
            +
                "126177": {
         
     | 
| 782 | 
         
            +
                  "content": "<|reserved_token_93|>",
         
     | 
| 783 | 
         
            +
                  "lstrip": false,
         
     | 
| 784 | 
         
            +
                  "normalized": false,
         
     | 
| 785 | 
         
            +
                  "rstrip": false,
         
     | 
| 786 | 
         
            +
                  "single_word": false,
         
     | 
| 787 | 
         
            +
                  "special": true
         
     | 
| 788 | 
         
            +
                },
         
     | 
| 789 | 
         
            +
                "126178": {
         
     | 
| 790 | 
         
            +
                  "content": "<|reserved_token_94|>",
         
     | 
| 791 | 
         
            +
                  "lstrip": false,
         
     | 
| 792 | 
         
            +
                  "normalized": false,
         
     | 
| 793 | 
         
            +
                  "rstrip": false,
         
     | 
| 794 | 
         
            +
                  "single_word": false,
         
     | 
| 795 | 
         
            +
                  "special": true
         
     | 
| 796 | 
         
            +
                },
         
     | 
| 797 | 
         
            +
                "126179": {
         
     | 
| 798 | 
         
            +
                  "content": "<|reserved_token_95|>",
         
     | 
| 799 | 
         
            +
                  "lstrip": false,
         
     | 
| 800 | 
         
            +
                  "normalized": false,
         
     | 
| 801 | 
         
            +
                  "rstrip": false,
         
     | 
| 802 | 
         
            +
                  "single_word": false,
         
     | 
| 803 | 
         
            +
                  "special": true
         
     | 
| 804 | 
         
            +
                },
         
     | 
| 805 | 
         
            +
                "126180": {
         
     | 
| 806 | 
         
            +
                  "content": "<|reserved_token_96|>",
         
     | 
| 807 | 
         
            +
                  "lstrip": false,
         
     | 
| 808 | 
         
            +
                  "normalized": false,
         
     | 
| 809 | 
         
            +
                  "rstrip": false,
         
     | 
| 810 | 
         
            +
                  "single_word": false,
         
     | 
| 811 | 
         
            +
                  "special": true
         
     | 
| 812 | 
         
            +
                },
         
     | 
| 813 | 
         
            +
                "126181": {
         
     | 
| 814 | 
         
            +
                  "content": "<|reserved_token_97|>",
         
     | 
| 815 | 
         
            +
                  "lstrip": false,
         
     | 
| 816 | 
         
            +
                  "normalized": false,
         
     | 
| 817 | 
         
            +
                  "rstrip": false,
         
     | 
| 818 | 
         
            +
                  "single_word": false,
         
     | 
| 819 | 
         
            +
                  "special": true
         
     | 
| 820 | 
         
            +
                },
         
     | 
| 821 | 
         
            +
                "126182": {
         
     | 
| 822 | 
         
            +
                  "content": "<|reserved_token_98|>",
         
     | 
| 823 | 
         
            +
                  "lstrip": false,
         
     | 
| 824 | 
         
            +
                  "normalized": false,
         
     | 
| 825 | 
         
            +
                  "rstrip": false,
         
     | 
| 826 | 
         
            +
                  "single_word": false,
         
     | 
| 827 | 
         
            +
                  "special": true
         
     | 
| 828 | 
         
            +
                },
         
     | 
| 829 | 
         
            +
                "126183": {
         
     | 
| 830 | 
         
            +
                  "content": "<|reserved_token_99|>",
         
     | 
| 831 | 
         
            +
                  "lstrip": false,
         
     | 
| 832 | 
         
            +
                  "normalized": false,
         
     | 
| 833 | 
         
            +
                  "rstrip": false,
         
     | 
| 834 | 
         
            +
                  "single_word": false,
         
     | 
| 835 | 
         
            +
                  "special": true
         
     | 
| 836 | 
         
            +
                },
         
     | 
| 837 | 
         
            +
                "126184": {
         
     | 
| 838 | 
         
            +
                  "content": "<|reserved_token_100|>",
         
     | 
| 839 | 
         
            +
                  "lstrip": false,
         
     | 
| 840 | 
         
            +
                  "normalized": false,
         
     | 
| 841 | 
         
            +
                  "rstrip": false,
         
     | 
| 842 | 
         
            +
                  "single_word": false,
         
     | 
| 843 | 
         
            +
                  "special": true
         
     | 
| 844 | 
         
            +
                },
         
     | 
| 845 | 
         
            +
                "126185": {
         
     | 
| 846 | 
         
            +
                  "content": "<|reserved_token_101|>",
         
     | 
| 847 | 
         
            +
                  "lstrip": false,
         
     | 
| 848 | 
         
            +
                  "normalized": false,
         
     | 
| 849 | 
         
            +
                  "rstrip": false,
         
     | 
| 850 | 
         
            +
                  "single_word": false,
         
     | 
| 851 | 
         
            +
                  "special": true
         
     | 
| 852 | 
         
            +
                },
         
     | 
| 853 | 
         
            +
                "126186": {
         
     | 
| 854 | 
         
            +
                  "content": "<|reserved_token_102|>",
         
     | 
| 855 | 
         
            +
                  "lstrip": false,
         
     | 
| 856 | 
         
            +
                  "normalized": false,
         
     | 
| 857 | 
         
            +
                  "rstrip": false,
         
     | 
| 858 | 
         
            +
                  "single_word": false,
         
     | 
| 859 | 
         
            +
                  "special": true
         
     | 
| 860 | 
         
            +
                },
         
     | 
| 861 | 
         
            +
                "126187": {
         
     | 
| 862 | 
         
            +
                  "content": "<|reserved_token_103|>",
         
     | 
| 863 | 
         
            +
                  "lstrip": false,
         
     | 
| 864 | 
         
            +
                  "normalized": false,
         
     | 
| 865 | 
         
            +
                  "rstrip": false,
         
     | 
| 866 | 
         
            +
                  "single_word": false,
         
     | 
| 867 | 
         
            +
                  "special": true
         
     | 
| 868 | 
         
            +
                },
         
     | 
| 869 | 
         
            +
                "126188": {
         
     | 
| 870 | 
         
            +
                  "content": "<|reserved_token_104|>",
         
     | 
| 871 | 
         
            +
                  "lstrip": false,
         
     | 
| 872 | 
         
            +
                  "normalized": false,
         
     | 
| 873 | 
         
            +
                  "rstrip": false,
         
     | 
| 874 | 
         
            +
                  "single_word": false,
         
     | 
| 875 | 
         
            +
                  "special": true
         
     | 
| 876 | 
         
            +
                },
         
     | 
| 877 | 
         
            +
                "126189": {
         
     | 
| 878 | 
         
            +
                  "content": "<|reserved_token_105|>",
         
     | 
| 879 | 
         
            +
                  "lstrip": false,
         
     | 
| 880 | 
         
            +
                  "normalized": false,
         
     | 
| 881 | 
         
            +
                  "rstrip": false,
         
     | 
| 882 | 
         
            +
                  "single_word": false,
         
     | 
| 883 | 
         
            +
                  "special": true
         
     | 
| 884 | 
         
            +
                },
         
     | 
| 885 | 
         
            +
                "126190": {
         
     | 
| 886 | 
         
            +
                  "content": "<|reserved_token_106|>",
         
     | 
| 887 | 
         
            +
                  "lstrip": false,
         
     | 
| 888 | 
         
            +
                  "normalized": false,
         
     | 
| 889 | 
         
            +
                  "rstrip": false,
         
     | 
| 890 | 
         
            +
                  "single_word": false,
         
     | 
| 891 | 
         
            +
                  "special": true
         
     | 
| 892 | 
         
            +
                },
         
     | 
| 893 | 
         
            +
                "126191": {
         
     | 
| 894 | 
         
            +
                  "content": "<|reserved_token_107|>",
         
     | 
| 895 | 
         
            +
                  "lstrip": false,
         
     | 
| 896 | 
         
            +
                  "normalized": false,
         
     | 
| 897 | 
         
            +
                  "rstrip": false,
         
     | 
| 898 | 
         
            +
                  "single_word": false,
         
     | 
| 899 | 
         
            +
                  "special": true
         
     | 
| 900 | 
         
            +
                },
         
     | 
| 901 | 
         
            +
                "126192": {
         
     | 
| 902 | 
         
            +
                  "content": "<|reserved_token_108|>",
         
     | 
| 903 | 
         
            +
                  "lstrip": false,
         
     | 
| 904 | 
         
            +
                  "normalized": false,
         
     | 
| 905 | 
         
            +
                  "rstrip": false,
         
     | 
| 906 | 
         
            +
                  "single_word": false,
         
     | 
| 907 | 
         
            +
                  "special": true
         
     | 
| 908 | 
         
            +
                },
         
     | 
| 909 | 
         
            +
                "126193": {
         
     | 
| 910 | 
         
            +
                  "content": "<|reserved_token_109|>",
         
     | 
| 911 | 
         
            +
                  "lstrip": false,
         
     | 
| 912 | 
         
            +
                  "normalized": false,
         
     | 
| 913 | 
         
            +
                  "rstrip": false,
         
     | 
| 914 | 
         
            +
                  "single_word": false,
         
     | 
| 915 | 
         
            +
                  "special": true
         
     | 
| 916 | 
         
            +
                },
         
     | 
| 917 | 
         
            +
                "126194": {
         
     | 
| 918 | 
         
            +
                  "content": "<|reserved_token_110|>",
         
     | 
| 919 | 
         
            +
                  "lstrip": false,
         
     | 
| 920 | 
         
            +
                  "normalized": false,
         
     | 
| 921 | 
         
            +
                  "rstrip": false,
         
     | 
| 922 | 
         
            +
                  "single_word": false,
         
     | 
| 923 | 
         
            +
                  "special": true
         
     | 
| 924 | 
         
            +
                },
         
     | 
| 925 | 
         
            +
                "126195": {
         
     | 
| 926 | 
         
            +
                  "content": "<|reserved_token_111|>",
         
     | 
| 927 | 
         
            +
                  "lstrip": false,
         
     | 
| 928 | 
         
            +
                  "normalized": false,
         
     | 
| 929 | 
         
            +
                  "rstrip": false,
         
     | 
| 930 | 
         
            +
                  "single_word": false,
         
     | 
| 931 | 
         
            +
                  "special": true
         
     | 
| 932 | 
         
            +
                },
         
     | 
| 933 | 
         
            +
                "126196": {
         
     | 
| 934 | 
         
            +
                  "content": "<|reserved_token_112|>",
         
     | 
| 935 | 
         
            +
                  "lstrip": false,
         
     | 
| 936 | 
         
            +
                  "normalized": false,
         
     | 
| 937 | 
         
            +
                  "rstrip": false,
         
     | 
| 938 | 
         
            +
                  "single_word": false,
         
     | 
| 939 | 
         
            +
                  "special": true
         
     | 
| 940 | 
         
            +
                },
         
     | 
| 941 | 
         
            +
                "126197": {
         
     | 
| 942 | 
         
            +
                  "content": "<|reserved_token_113|>",
         
     | 
| 943 | 
         
            +
                  "lstrip": false,
         
     | 
| 944 | 
         
            +
                  "normalized": false,
         
     | 
| 945 | 
         
            +
                  "rstrip": false,
         
     | 
| 946 | 
         
            +
                  "single_word": false,
         
     | 
| 947 | 
         
            +
                  "special": true
         
     | 
| 948 | 
         
            +
                },
         
     | 
| 949 | 
         
            +
                "126198": {
         
     | 
| 950 | 
         
            +
                  "content": "<|reserved_token_114|>",
         
     | 
| 951 | 
         
            +
                  "lstrip": false,
         
     | 
| 952 | 
         
            +
                  "normalized": false,
         
     | 
| 953 | 
         
            +
                  "rstrip": false,
         
     | 
| 954 | 
         
            +
                  "single_word": false,
         
     | 
| 955 | 
         
            +
                  "special": true
         
     | 
| 956 | 
         
            +
                },
         
     | 
| 957 | 
         
            +
                "126199": {
         
     | 
| 958 | 
         
            +
                  "content": "<|reserved_token_115|>",
         
     | 
| 959 | 
         
            +
                  "lstrip": false,
         
     | 
| 960 | 
         
            +
                  "normalized": false,
         
     | 
| 961 | 
         
            +
                  "rstrip": false,
         
     | 
| 962 | 
         
            +
                  "single_word": false,
         
     | 
| 963 | 
         
            +
                  "special": true
         
     | 
| 964 | 
         
            +
                },
         
     | 
| 965 | 
         
            +
                "126200": {
         
     | 
| 966 | 
         
            +
                  "content": "<|reserved_token_116|>",
         
     | 
| 967 | 
         
            +
                  "lstrip": false,
         
     | 
| 968 | 
         
            +
                  "normalized": false,
         
     | 
| 969 | 
         
            +
                  "rstrip": false,
         
     | 
| 970 | 
         
            +
                  "single_word": false,
         
     | 
| 971 | 
         
            +
                  "special": true
         
     | 
| 972 | 
         
            +
                },
         
     | 
| 973 | 
         
            +
                "126201": {
         
     | 
| 974 | 
         
            +
                  "content": "<|reserved_token_117|>",
         
     | 
| 975 | 
         
            +
                  "lstrip": false,
         
     | 
| 976 | 
         
            +
                  "normalized": false,
         
     | 
| 977 | 
         
            +
                  "rstrip": false,
         
     | 
| 978 | 
         
            +
                  "single_word": false,
         
     | 
| 979 | 
         
            +
                  "special": true
         
     | 
| 980 | 
         
            +
                },
         
     | 
| 981 | 
         
            +
                "126202": {
         
     | 
| 982 | 
         
            +
                  "content": "<|reserved_token_118|>",
         
     | 
| 983 | 
         
            +
                  "lstrip": false,
         
     | 
| 984 | 
         
            +
                  "normalized": false,
         
     | 
| 985 | 
         
            +
                  "rstrip": false,
         
     | 
| 986 | 
         
            +
                  "single_word": false,
         
     | 
| 987 | 
         
            +
                  "special": true
         
     | 
| 988 | 
         
            +
                },
         
     | 
| 989 | 
         
            +
                "126203": {
         
     | 
| 990 | 
         
            +
                  "content": "<|reserved_token_119|>",
         
     | 
| 991 | 
         
            +
                  "lstrip": false,
         
     | 
| 992 | 
         
            +
                  "normalized": false,
         
     | 
| 993 | 
         
            +
                  "rstrip": false,
         
     | 
| 994 | 
         
            +
                  "single_word": false,
         
     | 
| 995 | 
         
            +
                  "special": true
         
     | 
| 996 | 
         
            +
                },
         
     | 
| 997 | 
         
            +
                "126204": {
         
     | 
| 998 | 
         
            +
                  "content": "<|reserved_token_120|>",
         
     | 
| 999 | 
         
            +
                  "lstrip": false,
         
     | 
| 1000 | 
         
            +
                  "normalized": false,
         
     | 
| 1001 | 
         
            +
                  "rstrip": false,
         
     | 
| 1002 | 
         
            +
                  "single_word": false,
         
     | 
| 1003 | 
         
            +
                  "special": true
         
     | 
| 1004 | 
         
            +
                },
         
     | 
| 1005 | 
         
            +
                "126205": {
         
     | 
| 1006 | 
         
            +
                  "content": "<|reserved_token_121|>",
         
     | 
| 1007 | 
         
            +
                  "lstrip": false,
         
     | 
| 1008 | 
         
            +
                  "normalized": false,
         
     | 
| 1009 | 
         
            +
                  "rstrip": false,
         
     | 
| 1010 | 
         
            +
                  "single_word": false,
         
     | 
| 1011 | 
         
            +
                  "special": true
         
     | 
| 1012 | 
         
            +
                },
         
     | 
| 1013 | 
         
            +
                "126206": {
         
     | 
| 1014 | 
         
            +
                  "content": "<|reserved_token_122|>",
         
     | 
| 1015 | 
         
            +
                  "lstrip": false,
         
     | 
| 1016 | 
         
            +
                  "normalized": false,
         
     | 
| 1017 | 
         
            +
                  "rstrip": false,
         
     | 
| 1018 | 
         
            +
                  "single_word": false,
         
     | 
| 1019 | 
         
            +
                  "special": true
         
     | 
| 1020 | 
         
            +
                },
         
     | 
| 1021 | 
         
            +
                "126207": {
         
     | 
| 1022 | 
         
            +
                  "content": "<|reserved_token_123|>",
         
     | 
| 1023 | 
         
            +
                  "lstrip": false,
         
     | 
| 1024 | 
         
            +
                  "normalized": false,
         
     | 
| 1025 | 
         
            +
                  "rstrip": false,
         
     | 
| 1026 | 
         
            +
                  "single_word": false,
         
     | 
| 1027 | 
         
            +
                  "special": true
         
     | 
| 1028 | 
         
            +
                },
         
     | 
| 1029 | 
         
            +
                "126208": {
         
     | 
| 1030 | 
         
            +
                  "content": "<|reserved_token_124|>",
         
     | 
| 1031 | 
         
            +
                  "lstrip": false,
         
     | 
| 1032 | 
         
            +
                  "normalized": false,
         
     | 
| 1033 | 
         
            +
                  "rstrip": false,
         
     | 
| 1034 | 
         
            +
                  "single_word": false,
         
     | 
| 1035 | 
         
            +
                  "special": true
         
     | 
| 1036 | 
         
            +
                },
         
     | 
| 1037 | 
         
            +
                "126209": {
         
     | 
| 1038 | 
         
            +
                  "content": "<|reserved_token_125|>",
         
     | 
| 1039 | 
         
            +
                  "lstrip": false,
         
     | 
| 1040 | 
         
            +
                  "normalized": false,
         
     | 
| 1041 | 
         
            +
                  "rstrip": false,
         
     | 
| 1042 | 
         
            +
                  "single_word": false,
         
     | 
| 1043 | 
         
            +
                  "special": true
         
     | 
| 1044 | 
         
            +
                },
         
     | 
| 1045 | 
         
            +
                "126210": {
         
     | 
| 1046 | 
         
            +
                  "content": "<|reserved_token_126|>",
         
     | 
| 1047 | 
         
            +
                  "lstrip": false,
         
     | 
| 1048 | 
         
            +
                  "normalized": false,
         
     | 
| 1049 | 
         
            +
                  "rstrip": false,
         
     | 
| 1050 | 
         
            +
                  "single_word": false,
         
     | 
| 1051 | 
         
            +
                  "special": true
         
     | 
| 1052 | 
         
            +
                },
         
     | 
| 1053 | 
         
            +
                "126211": {
         
     | 
| 1054 | 
         
            +
                  "content": "<|reserved_token_127|>",
         
     | 
| 1055 | 
         
            +
                  "lstrip": false,
         
     | 
| 1056 | 
         
            +
                  "normalized": false,
         
     | 
| 1057 | 
         
            +
                  "rstrip": false,
         
     | 
| 1058 | 
         
            +
                  "single_word": false,
         
     | 
| 1059 | 
         
            +
                  "special": true
         
     | 
| 1060 | 
         
            +
                },
         
     | 
| 1061 | 
         
            +
                "126212": {
         
     | 
| 1062 | 
         
            +
                  "content": "<|reserved_token_128|>",
         
     | 
| 1063 | 
         
            +
                  "lstrip": false,
         
     | 
| 1064 | 
         
            +
                  "normalized": false,
         
     | 
| 1065 | 
         
            +
                  "rstrip": false,
         
     | 
| 1066 | 
         
            +
                  "single_word": false,
         
     | 
| 1067 | 
         
            +
                  "special": true
         
     | 
| 1068 | 
         
            +
                },
         
     | 
| 1069 | 
         
            +
                "126213": {
         
     | 
| 1070 | 
         
            +
                  "content": "<|reserved_token_129|>",
         
     | 
| 1071 | 
         
            +
                  "lstrip": false,
         
     | 
| 1072 | 
         
            +
                  "normalized": false,
         
     | 
| 1073 | 
         
            +
                  "rstrip": false,
         
     | 
| 1074 | 
         
            +
                  "single_word": false,
         
     | 
| 1075 | 
         
            +
                  "special": true
         
     | 
| 1076 | 
         
            +
                },
         
     | 
| 1077 | 
         
            +
                "126214": {
         
     | 
| 1078 | 
         
            +
                  "content": "<|reserved_token_130|>",
         
     | 
| 1079 | 
         
            +
                  "lstrip": false,
         
     | 
| 1080 | 
         
            +
                  "normalized": false,
         
     | 
| 1081 | 
         
            +
                  "rstrip": false,
         
     | 
| 1082 | 
         
            +
                  "single_word": false,
         
     | 
| 1083 | 
         
            +
                  "special": true
         
     | 
| 1084 | 
         
            +
                },
         
     | 
| 1085 | 
         
            +
                "126215": {
         
     | 
| 1086 | 
         
            +
                  "content": "<|reserved_token_131|>",
         
     | 
| 1087 | 
         
            +
                  "lstrip": false,
         
     | 
| 1088 | 
         
            +
                  "normalized": false,
         
     | 
| 1089 | 
         
            +
                  "rstrip": false,
         
     | 
| 1090 | 
         
            +
                  "single_word": false,
         
     | 
| 1091 | 
         
            +
                  "special": true
         
     | 
| 1092 | 
         
            +
                },
         
     | 
| 1093 | 
         
            +
                "126216": {
         
     | 
| 1094 | 
         
            +
                  "content": "<|reserved_token_132|>",
         
     | 
| 1095 | 
         
            +
                  "lstrip": false,
         
     | 
| 1096 | 
         
            +
                  "normalized": false,
         
     | 
| 1097 | 
         
            +
                  "rstrip": false,
         
     | 
| 1098 | 
         
            +
                  "single_word": false,
         
     | 
| 1099 | 
         
            +
                  "special": true
         
     | 
| 1100 | 
         
            +
                },
         
     | 
| 1101 | 
         
            +
                "126217": {
         
     | 
| 1102 | 
         
            +
                  "content": "<|reserved_token_133|>",
         
     | 
| 1103 | 
         
            +
                  "lstrip": false,
         
     | 
| 1104 | 
         
            +
                  "normalized": false,
         
     | 
| 1105 | 
         
            +
                  "rstrip": false,
         
     | 
| 1106 | 
         
            +
                  "single_word": false,
         
     | 
| 1107 | 
         
            +
                  "special": true
         
     | 
| 1108 | 
         
            +
                },
         
     | 
| 1109 | 
         
            +
                "126218": {
         
     | 
| 1110 | 
         
            +
                  "content": "<|reserved_token_134|>",
         
     | 
| 1111 | 
         
            +
                  "lstrip": false,
         
     | 
| 1112 | 
         
            +
                  "normalized": false,
         
     | 
| 1113 | 
         
            +
                  "rstrip": false,
         
     | 
| 1114 | 
         
            +
                  "single_word": false,
         
     | 
| 1115 | 
         
            +
                  "special": true
         
     | 
| 1116 | 
         
            +
                },
         
     | 
| 1117 | 
         
            +
                "126219": {
         
     | 
| 1118 | 
         
            +
                  "content": "<|reserved_token_135|>",
         
     | 
| 1119 | 
         
            +
                  "lstrip": false,
         
     | 
| 1120 | 
         
            +
                  "normalized": false,
         
     | 
| 1121 | 
         
            +
                  "rstrip": false,
         
     | 
| 1122 | 
         
            +
                  "single_word": false,
         
     | 
| 1123 | 
         
            +
                  "special": true
         
     | 
| 1124 | 
         
            +
                },
         
     | 
| 1125 | 
         
            +
                "126220": {
         
     | 
| 1126 | 
         
            +
                  "content": "<|reserved_token_136|>",
         
     | 
| 1127 | 
         
            +
                  "lstrip": false,
         
     | 
| 1128 | 
         
            +
                  "normalized": false,
         
     | 
| 1129 | 
         
            +
                  "rstrip": false,
         
     | 
| 1130 | 
         
            +
                  "single_word": false,
         
     | 
| 1131 | 
         
            +
                  "special": true
         
     | 
| 1132 | 
         
            +
                },
         
     | 
| 1133 | 
         
            +
                "126221": {
         
     | 
| 1134 | 
         
            +
                  "content": "<|reserved_token_137|>",
         
     | 
| 1135 | 
         
            +
                  "lstrip": false,
         
     | 
| 1136 | 
         
            +
                  "normalized": false,
         
     | 
| 1137 | 
         
            +
                  "rstrip": false,
         
     | 
| 1138 | 
         
            +
                  "single_word": false,
         
     | 
| 1139 | 
         
            +
                  "special": true
         
     | 
| 1140 | 
         
            +
                },
         
     | 
| 1141 | 
         
            +
                "126222": {
         
     | 
| 1142 | 
         
            +
                  "content": "<|reserved_token_138|>",
         
     | 
| 1143 | 
         
            +
                  "lstrip": false,
         
     | 
| 1144 | 
         
            +
                  "normalized": false,
         
     | 
| 1145 | 
         
            +
                  "rstrip": false,
         
     | 
| 1146 | 
         
            +
                  "single_word": false,
         
     | 
| 1147 | 
         
            +
                  "special": true
         
     | 
| 1148 | 
         
            +
                },
         
     | 
| 1149 | 
         
            +
                "126223": {
         
     | 
| 1150 | 
         
            +
                  "content": "<|reserved_token_139|>",
         
     | 
| 1151 | 
         
            +
                  "lstrip": false,
         
     | 
| 1152 | 
         
            +
                  "normalized": false,
         
     | 
| 1153 | 
         
            +
                  "rstrip": false,
         
     | 
| 1154 | 
         
            +
                  "single_word": false,
         
     | 
| 1155 | 
         
            +
                  "special": true
         
     | 
| 1156 | 
         
            +
                },
         
     | 
| 1157 | 
         
            +
                "126224": {
         
     | 
| 1158 | 
         
            +
                  "content": "<|reserved_token_140|>",
         
     | 
| 1159 | 
         
            +
                  "lstrip": false,
         
     | 
| 1160 | 
         
            +
                  "normalized": false,
         
     | 
| 1161 | 
         
            +
                  "rstrip": false,
         
     | 
| 1162 | 
         
            +
                  "single_word": false,
         
     | 
| 1163 | 
         
            +
                  "special": true
         
     | 
| 1164 | 
         
            +
                },
         
     | 
| 1165 | 
         
            +
                "126225": {
         
     | 
| 1166 | 
         
            +
                  "content": "<|reserved_token_141|>",
         
     | 
| 1167 | 
         
            +
                  "lstrip": false,
         
     | 
| 1168 | 
         
            +
                  "normalized": false,
         
     | 
| 1169 | 
         
            +
                  "rstrip": false,
         
     | 
| 1170 | 
         
            +
                  "single_word": false,
         
     | 
| 1171 | 
         
            +
                  "special": true
         
     | 
| 1172 | 
         
            +
                },
         
     | 
| 1173 | 
         
            +
                "126226": {
         
     | 
| 1174 | 
         
            +
                  "content": "<|reserved_token_142|>",
         
     | 
| 1175 | 
         
            +
                  "lstrip": false,
         
     | 
| 1176 | 
         
            +
                  "normalized": false,
         
     | 
| 1177 | 
         
            +
                  "rstrip": false,
         
     | 
| 1178 | 
         
            +
                  "single_word": false,
         
     | 
| 1179 | 
         
            +
                  "special": true
         
     | 
| 1180 | 
         
            +
                },
         
     | 
| 1181 | 
         
            +
                "126227": {
         
     | 
| 1182 | 
         
            +
                  "content": "<|reserved_token_143|>",
         
     | 
| 1183 | 
         
            +
                  "lstrip": false,
         
     | 
| 1184 | 
         
            +
                  "normalized": false,
         
     | 
| 1185 | 
         
            +
                  "rstrip": false,
         
     | 
| 1186 | 
         
            +
                  "single_word": false,
         
     | 
| 1187 | 
         
            +
                  "special": true
         
     | 
| 1188 | 
         
            +
                },
         
     | 
| 1189 | 
         
            +
                "126228": {
         
     | 
| 1190 | 
         
            +
                  "content": "<|reserved_token_144|>",
         
     | 
| 1191 | 
         
            +
                  "lstrip": false,
         
     | 
| 1192 | 
         
            +
                  "normalized": false,
         
     | 
| 1193 | 
         
            +
                  "rstrip": false,
         
     | 
| 1194 | 
         
            +
                  "single_word": false,
         
     | 
| 1195 | 
         
            +
                  "special": true
         
     | 
| 1196 | 
         
            +
                },
         
     | 
| 1197 | 
         
            +
                "126229": {
         
     | 
| 1198 | 
         
            +
                  "content": "<|reserved_token_145|>",
         
     | 
| 1199 | 
         
            +
                  "lstrip": false,
         
     | 
| 1200 | 
         
            +
                  "normalized": false,
         
     | 
| 1201 | 
         
            +
                  "rstrip": false,
         
     | 
| 1202 | 
         
            +
                  "single_word": false,
         
     | 
| 1203 | 
         
            +
                  "special": true
         
     | 
| 1204 | 
         
            +
                },
         
     | 
| 1205 | 
         
            +
                "126230": {
         
     | 
| 1206 | 
         
            +
                  "content": "<|reserved_token_146|>",
         
     | 
| 1207 | 
         
            +
                  "lstrip": false,
         
     | 
| 1208 | 
         
            +
                  "normalized": false,
         
     | 
| 1209 | 
         
            +
                  "rstrip": false,
         
     | 
| 1210 | 
         
            +
                  "single_word": false,
         
     | 
| 1211 | 
         
            +
                  "special": true
         
     | 
| 1212 | 
         
            +
                },
         
     | 
| 1213 | 
         
            +
                "126231": {
         
     | 
| 1214 | 
         
            +
                  "content": "<|reserved_token_147|>",
         
     | 
| 1215 | 
         
            +
                  "lstrip": false,
         
     | 
| 1216 | 
         
            +
                  "normalized": false,
         
     | 
| 1217 | 
         
            +
                  "rstrip": false,
         
     | 
| 1218 | 
         
            +
                  "single_word": false,
         
     | 
| 1219 | 
         
            +
                  "special": true
         
     | 
| 1220 | 
         
            +
                },
         
     | 
| 1221 | 
         
            +
                "126232": {
         
     | 
| 1222 | 
         
            +
                  "content": "<|reserved_token_148|>",
         
     | 
| 1223 | 
         
            +
                  "lstrip": false,
         
     | 
| 1224 | 
         
            +
                  "normalized": false,
         
     | 
| 1225 | 
         
            +
                  "rstrip": false,
         
     | 
| 1226 | 
         
            +
                  "single_word": false,
         
     | 
| 1227 | 
         
            +
                  "special": true
         
     | 
| 1228 | 
         
            +
                },
         
     | 
| 1229 | 
         
            +
                "126233": {
         
     | 
| 1230 | 
         
            +
                  "content": "<|reserved_token_149|>",
         
     | 
| 1231 | 
         
            +
                  "lstrip": false,
         
     | 
| 1232 | 
         
            +
                  "normalized": false,
         
     | 
| 1233 | 
         
            +
                  "rstrip": false,
         
     | 
| 1234 | 
         
            +
                  "single_word": false,
         
     | 
| 1235 | 
         
            +
                  "special": true
         
     | 
| 1236 | 
         
            +
                },
         
     | 
| 1237 | 
         
            +
                "126234": {
         
     | 
| 1238 | 
         
            +
                  "content": "<|reserved_token_150|>",
         
     | 
| 1239 | 
         
            +
                  "lstrip": false,
         
     | 
| 1240 | 
         
            +
                  "normalized": false,
         
     | 
| 1241 | 
         
            +
                  "rstrip": false,
         
     | 
| 1242 | 
         
            +
                  "single_word": false,
         
     | 
| 1243 | 
         
            +
                  "special": true
         
     | 
| 1244 | 
         
            +
                },
         
     | 
| 1245 | 
         
            +
                "126235": {
         
     | 
| 1246 | 
         
            +
                  "content": "<|reserved_token_151|>",
         
     | 
| 1247 | 
         
            +
                  "lstrip": false,
         
     | 
| 1248 | 
         
            +
                  "normalized": false,
         
     | 
| 1249 | 
         
            +
                  "rstrip": false,
         
     | 
| 1250 | 
         
            +
                  "single_word": false,
         
     | 
| 1251 | 
         
            +
                  "special": true
         
     | 
| 1252 | 
         
            +
                },
         
     | 
| 1253 | 
         
            +
                "126236": {
         
     | 
| 1254 | 
         
            +
                  "content": "<|reserved_token_152|>",
         
     | 
| 1255 | 
         
            +
                  "lstrip": false,
         
     | 
| 1256 | 
         
            +
                  "normalized": false,
         
     | 
| 1257 | 
         
            +
                  "rstrip": false,
         
     | 
| 1258 | 
         
            +
                  "single_word": false,
         
     | 
| 1259 | 
         
            +
                  "special": true
         
     | 
| 1260 | 
         
            +
                },
         
     | 
| 1261 | 
         
            +
                "126237": {
         
     | 
| 1262 | 
         
            +
                  "content": "<|reserved_token_153|>",
         
     | 
| 1263 | 
         
            +
                  "lstrip": false,
         
     | 
| 1264 | 
         
            +
                  "normalized": false,
         
     | 
| 1265 | 
         
            +
                  "rstrip": false,
         
     | 
| 1266 | 
         
            +
                  "single_word": false,
         
     | 
| 1267 | 
         
            +
                  "special": true
         
     | 
| 1268 | 
         
            +
                },
         
     | 
| 1269 | 
         
            +
                "126238": {
         
     | 
| 1270 | 
         
            +
                  "content": "<|reserved_token_154|>",
         
     | 
| 1271 | 
         
            +
                  "lstrip": false,
         
     | 
| 1272 | 
         
            +
                  "normalized": false,
         
     | 
| 1273 | 
         
            +
                  "rstrip": false,
         
     | 
| 1274 | 
         
            +
                  "single_word": false,
         
     | 
| 1275 | 
         
            +
                  "special": true
         
     | 
| 1276 | 
         
            +
                },
         
     | 
| 1277 | 
         
            +
                "126239": {
         
     | 
| 1278 | 
         
            +
                  "content": "<|reserved_token_155|>",
         
     | 
| 1279 | 
         
            +
                  "lstrip": false,
         
     | 
| 1280 | 
         
            +
                  "normalized": false,
         
     | 
| 1281 | 
         
            +
                  "rstrip": false,
         
     | 
| 1282 | 
         
            +
                  "single_word": false,
         
     | 
| 1283 | 
         
            +
                  "special": true
         
     | 
| 1284 | 
         
            +
                },
         
     | 
| 1285 | 
         
            +
                "126240": {
         
     | 
| 1286 | 
         
            +
                  "content": "<|reserved_token_156|>",
         
     | 
| 1287 | 
         
            +
                  "lstrip": false,
         
     | 
| 1288 | 
         
            +
                  "normalized": false,
         
     | 
| 1289 | 
         
            +
                  "rstrip": false,
         
     | 
| 1290 | 
         
            +
                  "single_word": false,
         
     | 
| 1291 | 
         
            +
                  "special": true
         
     | 
| 1292 | 
         
            +
                },
         
     | 
| 1293 | 
         
            +
                "126241": {
         
     | 
| 1294 | 
         
            +
                  "content": "<|reserved_token_157|>",
         
     | 
| 1295 | 
         
            +
                  "lstrip": false,
         
     | 
| 1296 | 
         
            +
                  "normalized": false,
         
     | 
| 1297 | 
         
            +
                  "rstrip": false,
         
     | 
| 1298 | 
         
            +
                  "single_word": false,
         
     | 
| 1299 | 
         
            +
                  "special": true
         
     | 
| 1300 | 
         
            +
                },
         
     | 
| 1301 | 
         
            +
                "126242": {
         
     | 
| 1302 | 
         
            +
                  "content": "<|reserved_token_158|>",
         
     | 
| 1303 | 
         
            +
                  "lstrip": false,
         
     | 
| 1304 | 
         
            +
                  "normalized": false,
         
     | 
| 1305 | 
         
            +
                  "rstrip": false,
         
     | 
| 1306 | 
         
            +
                  "single_word": false,
         
     | 
| 1307 | 
         
            +
                  "special": true
         
     | 
| 1308 | 
         
            +
                },
         
     | 
| 1309 | 
         
            +
                "126243": {
         
     | 
| 1310 | 
         
            +
                  "content": "<|reserved_token_159|>",
         
     | 
| 1311 | 
         
            +
                  "lstrip": false,
         
     | 
| 1312 | 
         
            +
                  "normalized": false,
         
     | 
| 1313 | 
         
            +
                  "rstrip": false,
         
     | 
| 1314 | 
         
            +
                  "single_word": false,
         
     | 
| 1315 | 
         
            +
                  "special": true
         
     | 
| 1316 | 
         
            +
                },
         
     | 
| 1317 | 
         
            +
                "126244": {
         
     | 
| 1318 | 
         
            +
                  "content": "<|reserved_token_160|>",
         
     | 
| 1319 | 
         
            +
                  "lstrip": false,
         
     | 
| 1320 | 
         
            +
                  "normalized": false,
         
     | 
| 1321 | 
         
            +
                  "rstrip": false,
         
     | 
| 1322 | 
         
            +
                  "single_word": false,
         
     | 
| 1323 | 
         
            +
                  "special": true
         
     | 
| 1324 | 
         
            +
                },
         
     | 
| 1325 | 
         
            +
                "126245": {
         
     | 
| 1326 | 
         
            +
                  "content": "<|reserved_token_161|>",
         
     | 
| 1327 | 
         
            +
                  "lstrip": false,
         
     | 
| 1328 | 
         
            +
                  "normalized": false,
         
     | 
| 1329 | 
         
            +
                  "rstrip": false,
         
     | 
| 1330 | 
         
            +
                  "single_word": false,
         
     | 
| 1331 | 
         
            +
                  "special": true
         
     | 
| 1332 | 
         
            +
                },
         
     | 
| 1333 | 
         
            +
                "126246": {
         
     | 
| 1334 | 
         
            +
                  "content": "<|reserved_token_162|>",
         
     | 
| 1335 | 
         
            +
                  "lstrip": false,
         
     | 
| 1336 | 
         
            +
                  "normalized": false,
         
     | 
| 1337 | 
         
            +
                  "rstrip": false,
         
     | 
| 1338 | 
         
            +
                  "single_word": false,
         
     | 
| 1339 | 
         
            +
                  "special": true
         
     | 
| 1340 | 
         
            +
                },
         
     | 
| 1341 | 
         
            +
                "126247": {
         
     | 
| 1342 | 
         
            +
                  "content": "<|reserved_token_163|>",
         
     | 
| 1343 | 
         
            +
                  "lstrip": false,
         
     | 
| 1344 | 
         
            +
                  "normalized": false,
         
     | 
| 1345 | 
         
            +
                  "rstrip": false,
         
     | 
| 1346 | 
         
            +
                  "single_word": false,
         
     | 
| 1347 | 
         
            +
                  "special": true
         
     | 
| 1348 | 
         
            +
                },
         
     | 
| 1349 | 
         
            +
                "126248": {
         
     | 
| 1350 | 
         
            +
                  "content": "<|reserved_token_164|>",
         
     | 
| 1351 | 
         
            +
                  "lstrip": false,
         
     | 
| 1352 | 
         
            +
                  "normalized": false,
         
     | 
| 1353 | 
         
            +
                  "rstrip": false,
         
     | 
| 1354 | 
         
            +
                  "single_word": false,
         
     | 
| 1355 | 
         
            +
                  "special": true
         
     | 
| 1356 | 
         
            +
                },
         
     | 
| 1357 | 
         
            +
                "126249": {
         
     | 
| 1358 | 
         
            +
                  "content": "<|reserved_token_165|>",
         
     | 
| 1359 | 
         
            +
                  "lstrip": false,
         
     | 
| 1360 | 
         
            +
                  "normalized": false,
         
     | 
| 1361 | 
         
            +
                  "rstrip": false,
         
     | 
| 1362 | 
         
            +
                  "single_word": false,
         
     | 
| 1363 | 
         
            +
                  "special": true
         
     | 
| 1364 | 
         
            +
                },
         
     | 
| 1365 | 
         
            +
                "126250": {
         
     | 
| 1366 | 
         
            +
                  "content": "<|reserved_token_166|>",
         
     | 
| 1367 | 
         
            +
                  "lstrip": false,
         
     | 
| 1368 | 
         
            +
                  "normalized": false,
         
     | 
| 1369 | 
         
            +
                  "rstrip": false,
         
     | 
| 1370 | 
         
            +
                  "single_word": false,
         
     | 
| 1371 | 
         
            +
                  "special": true
         
     | 
| 1372 | 
         
            +
                },
         
     | 
| 1373 | 
         
            +
                "126251": {
         
     | 
| 1374 | 
         
            +
                  "content": "<|reserved_token_167|>",
         
     | 
| 1375 | 
         
            +
                  "lstrip": false,
         
     | 
| 1376 | 
         
            +
                  "normalized": false,
         
     | 
| 1377 | 
         
            +
                  "rstrip": false,
         
     | 
| 1378 | 
         
            +
                  "single_word": false,
         
     | 
| 1379 | 
         
            +
                  "special": true
         
     | 
| 1380 | 
         
            +
                },
         
     | 
| 1381 | 
         
            +
                "126252": {
         
     | 
| 1382 | 
         
            +
                  "content": "<|reserved_token_168|>",
         
     | 
| 1383 | 
         
            +
                  "lstrip": false,
         
     | 
| 1384 | 
         
            +
                  "normalized": false,
         
     | 
| 1385 | 
         
            +
                  "rstrip": false,
         
     | 
| 1386 | 
         
            +
                  "single_word": false,
         
     | 
| 1387 | 
         
            +
                  "special": true
         
     | 
| 1388 | 
         
            +
                },
         
     | 
| 1389 | 
         
            +
                "126253": {
         
     | 
| 1390 | 
         
            +
                  "content": "<|reserved_token_169|>",
         
     | 
| 1391 | 
         
            +
                  "lstrip": false,
         
     | 
| 1392 | 
         
            +
                  "normalized": false,
         
     | 
| 1393 | 
         
            +
                  "rstrip": false,
         
     | 
| 1394 | 
         
            +
                  "single_word": false,
         
     | 
| 1395 | 
         
            +
                  "special": true
         
     | 
| 1396 | 
         
            +
                },
         
     | 
| 1397 | 
         
            +
                "126254": {
         
     | 
| 1398 | 
         
            +
                  "content": "<|reserved_token_170|>",
         
     | 
| 1399 | 
         
            +
                  "lstrip": false,
         
     | 
| 1400 | 
         
            +
                  "normalized": false,
         
     | 
| 1401 | 
         
            +
                  "rstrip": false,
         
     | 
| 1402 | 
         
            +
                  "single_word": false,
         
     | 
| 1403 | 
         
            +
                  "special": true
         
     | 
| 1404 | 
         
            +
                },
         
     | 
| 1405 | 
         
            +
                "126255": {
         
     | 
| 1406 | 
         
            +
                  "content": "<|reserved_token_171|>",
         
     | 
| 1407 | 
         
            +
                  "lstrip": false,
         
     | 
| 1408 | 
         
            +
                  "normalized": false,
         
     | 
| 1409 | 
         
            +
                  "rstrip": false,
         
     | 
| 1410 | 
         
            +
                  "single_word": false,
         
     | 
| 1411 | 
         
            +
                  "special": true
         
     | 
| 1412 | 
         
            +
                },
         
     | 
| 1413 | 
         
            +
                "126256": {
         
     | 
| 1414 | 
         
            +
                  "content": "<|reserved_token_172|>",
         
     | 
| 1415 | 
         
            +
                  "lstrip": false,
         
     | 
| 1416 | 
         
            +
                  "normalized": false,
         
     | 
| 1417 | 
         
            +
                  "rstrip": false,
         
     | 
| 1418 | 
         
            +
                  "single_word": false,
         
     | 
| 1419 | 
         
            +
                  "special": true
         
     | 
| 1420 | 
         
            +
                },
         
     | 
| 1421 | 
         
            +
                "126257": {
         
     | 
| 1422 | 
         
            +
                  "content": "<|reserved_token_173|>",
         
     | 
| 1423 | 
         
            +
                  "lstrip": false,
         
     | 
| 1424 | 
         
            +
                  "normalized": false,
         
     | 
| 1425 | 
         
            +
                  "rstrip": false,
         
     | 
| 1426 | 
         
            +
                  "single_word": false,
         
     | 
| 1427 | 
         
            +
                  "special": true
         
     | 
| 1428 | 
         
            +
                },
         
     | 
| 1429 | 
         
            +
                "126258": {
         
     | 
| 1430 | 
         
            +
                  "content": "<|reserved_token_174|>",
         
     | 
| 1431 | 
         
            +
                  "lstrip": false,
         
     | 
| 1432 | 
         
            +
                  "normalized": false,
         
     | 
| 1433 | 
         
            +
                  "rstrip": false,
         
     | 
| 1434 | 
         
            +
                  "single_word": false,
         
     | 
| 1435 | 
         
            +
                  "special": true
         
     | 
| 1436 | 
         
            +
                },
         
     | 
| 1437 | 
         
            +
                "126259": {
         
     | 
| 1438 | 
         
            +
                  "content": "<|reserved_token_175|>",
         
     | 
| 1439 | 
         
            +
                  "lstrip": false,
         
     | 
| 1440 | 
         
            +
                  "normalized": false,
         
     | 
| 1441 | 
         
            +
                  "rstrip": false,
         
     | 
| 1442 | 
         
            +
                  "single_word": false,
         
     | 
| 1443 | 
         
            +
                  "special": true
         
     | 
| 1444 | 
         
            +
                },
         
     | 
| 1445 | 
         
            +
                "126260": {
         
     | 
| 1446 | 
         
            +
                  "content": "<|reserved_token_176|>",
         
     | 
| 1447 | 
         
            +
                  "lstrip": false,
         
     | 
| 1448 | 
         
            +
                  "normalized": false,
         
     | 
| 1449 | 
         
            +
                  "rstrip": false,
         
     | 
| 1450 | 
         
            +
                  "single_word": false,
         
     | 
| 1451 | 
         
            +
                  "special": true
         
     | 
| 1452 | 
         
            +
                },
         
     | 
| 1453 | 
         
            +
                "126261": {
         
     | 
| 1454 | 
         
            +
                  "content": "<|reserved_token_177|>",
         
     | 
| 1455 | 
         
            +
                  "lstrip": false,
         
     | 
| 1456 | 
         
            +
                  "normalized": false,
         
     | 
| 1457 | 
         
            +
                  "rstrip": false,
         
     | 
| 1458 | 
         
            +
                  "single_word": false,
         
     | 
| 1459 | 
         
            +
                  "special": true
         
     | 
| 1460 | 
         
            +
                },
         
     | 
| 1461 | 
         
            +
                "126262": {
         
     | 
| 1462 | 
         
            +
                  "content": "<|reserved_token_178|>",
         
     | 
| 1463 | 
         
            +
                  "lstrip": false,
         
     | 
| 1464 | 
         
            +
                  "normalized": false,
         
     | 
| 1465 | 
         
            +
                  "rstrip": false,
         
     | 
| 1466 | 
         
            +
                  "single_word": false,
         
     | 
| 1467 | 
         
            +
                  "special": true
         
     | 
| 1468 | 
         
            +
                },
         
     | 
| 1469 | 
         
            +
                "126263": {
         
     | 
| 1470 | 
         
            +
                  "content": "<|reserved_token_179|>",
         
     | 
| 1471 | 
         
            +
                  "lstrip": false,
         
     | 
| 1472 | 
         
            +
                  "normalized": false,
         
     | 
| 1473 | 
         
            +
                  "rstrip": false,
         
     | 
| 1474 | 
         
            +
                  "single_word": false,
         
     | 
| 1475 | 
         
            +
                  "special": true
         
     | 
| 1476 | 
         
            +
                },
         
     | 
| 1477 | 
         
            +
                "126264": {
         
     | 
| 1478 | 
         
            +
                  "content": "<|reserved_token_180|>",
         
     | 
| 1479 | 
         
            +
                  "lstrip": false,
         
     | 
| 1480 | 
         
            +
                  "normalized": false,
         
     | 
| 1481 | 
         
            +
                  "rstrip": false,
         
     | 
| 1482 | 
         
            +
                  "single_word": false,
         
     | 
| 1483 | 
         
            +
                  "special": true
         
     | 
| 1484 | 
         
            +
                },
         
     | 
| 1485 | 
         
            +
                "126265": {
         
     | 
| 1486 | 
         
            +
                  "content": "<|reserved_token_181|>",
         
     | 
| 1487 | 
         
            +
                  "lstrip": false,
         
     | 
| 1488 | 
         
            +
                  "normalized": false,
         
     | 
| 1489 | 
         
            +
                  "rstrip": false,
         
     | 
| 1490 | 
         
            +
                  "single_word": false,
         
     | 
| 1491 | 
         
            +
                  "special": true
         
     | 
| 1492 | 
         
            +
                },
         
     | 
| 1493 | 
         
            +
                "126266": {
         
     | 
| 1494 | 
         
            +
                  "content": "<|reserved_token_182|>",
         
     | 
| 1495 | 
         
            +
                  "lstrip": false,
         
     | 
| 1496 | 
         
            +
                  "normalized": false,
         
     | 
| 1497 | 
         
            +
                  "rstrip": false,
         
     | 
| 1498 | 
         
            +
                  "single_word": false,
         
     | 
| 1499 | 
         
            +
                  "special": true
         
     | 
| 1500 | 
         
            +
                },
         
     | 
| 1501 | 
         
            +
                "126267": {
         
     | 
| 1502 | 
         
            +
                  "content": "<|reserved_token_183|>",
         
     | 
| 1503 | 
         
            +
                  "lstrip": false,
         
     | 
| 1504 | 
         
            +
                  "normalized": false,
         
     | 
| 1505 | 
         
            +
                  "rstrip": false,
         
     | 
| 1506 | 
         
            +
                  "single_word": false,
         
     | 
| 1507 | 
         
            +
                  "special": true
         
     | 
| 1508 | 
         
            +
                },
         
     | 
| 1509 | 
         
            +
                "126268": {
         
     | 
| 1510 | 
         
            +
                  "content": "<|reserved_token_184|>",
         
     | 
| 1511 | 
         
            +
                  "lstrip": false,
         
     | 
| 1512 | 
         
            +
                  "normalized": false,
         
     | 
| 1513 | 
         
            +
                  "rstrip": false,
         
     | 
| 1514 | 
         
            +
                  "single_word": false,
         
     | 
| 1515 | 
         
            +
                  "special": true
         
     | 
| 1516 | 
         
            +
                },
         
     | 
| 1517 | 
         
            +
                "126269": {
         
     | 
| 1518 | 
         
            +
                  "content": "<|reserved_token_185|>",
         
     | 
| 1519 | 
         
            +
                  "lstrip": false,
         
     | 
| 1520 | 
         
            +
                  "normalized": false,
         
     | 
| 1521 | 
         
            +
                  "rstrip": false,
         
     | 
| 1522 | 
         
            +
                  "single_word": false,
         
     | 
| 1523 | 
         
            +
                  "special": true
         
     | 
| 1524 | 
         
            +
                },
         
     | 
| 1525 | 
         
            +
                "126270": {
         
     | 
| 1526 | 
         
            +
                  "content": "<|reserved_token_186|>",
         
     | 
| 1527 | 
         
            +
                  "lstrip": false,
         
     | 
| 1528 | 
         
            +
                  "normalized": false,
         
     | 
| 1529 | 
         
            +
                  "rstrip": false,
         
     | 
| 1530 | 
         
            +
                  "single_word": false,
         
     | 
| 1531 | 
         
            +
                  "special": true
         
     | 
| 1532 | 
         
            +
                },
         
     | 
| 1533 | 
         
            +
                "126271": {
         
     | 
| 1534 | 
         
            +
                  "content": "<|reserved_token_187|>",
         
     | 
| 1535 | 
         
            +
                  "lstrip": false,
         
     | 
| 1536 | 
         
            +
                  "normalized": false,
         
     | 
| 1537 | 
         
            +
                  "rstrip": false,
         
     | 
| 1538 | 
         
            +
                  "single_word": false,
         
     | 
| 1539 | 
         
            +
                  "special": true
         
     | 
| 1540 | 
         
            +
                },
         
     | 
| 1541 | 
         
            +
                "126272": {
         
     | 
| 1542 | 
         
            +
                  "content": "<|reserved_token_188|>",
         
     | 
| 1543 | 
         
            +
                  "lstrip": false,
         
     | 
| 1544 | 
         
            +
                  "normalized": false,
         
     | 
| 1545 | 
         
            +
                  "rstrip": false,
         
     | 
| 1546 | 
         
            +
                  "single_word": false,
         
     | 
| 1547 | 
         
            +
                  "special": true
         
     | 
| 1548 | 
         
            +
                },
         
     | 
| 1549 | 
         
            +
                "126273": {
         
     | 
| 1550 | 
         
            +
                  "content": "<|reserved_token_189|>",
         
     | 
| 1551 | 
         
            +
                  "lstrip": false,
         
     | 
| 1552 | 
         
            +
                  "normalized": false,
         
     | 
| 1553 | 
         
            +
                  "rstrip": false,
         
     | 
| 1554 | 
         
            +
                  "single_word": false,
         
     | 
| 1555 | 
         
            +
                  "special": true
         
     | 
| 1556 | 
         
            +
                },
         
     | 
| 1557 | 
         
            +
                "126274": {
         
     | 
| 1558 | 
         
            +
                  "content": "<|reserved_token_190|>",
         
     | 
| 1559 | 
         
            +
                  "lstrip": false,
         
     | 
| 1560 | 
         
            +
                  "normalized": false,
         
     | 
| 1561 | 
         
            +
                  "rstrip": false,
         
     | 
| 1562 | 
         
            +
                  "single_word": false,
         
     | 
| 1563 | 
         
            +
                  "special": true
         
     | 
| 1564 | 
         
            +
                },
         
     | 
| 1565 | 
         
            +
                "126275": {
         
     | 
| 1566 | 
         
            +
                  "content": "<|reserved_token_191|>",
         
     | 
| 1567 | 
         
            +
                  "lstrip": false,
         
     | 
| 1568 | 
         
            +
                  "normalized": false,
         
     | 
| 1569 | 
         
            +
                  "rstrip": false,
         
     | 
| 1570 | 
         
            +
                  "single_word": false,
         
     | 
| 1571 | 
         
            +
                  "special": true
         
     | 
| 1572 | 
         
            +
                },
         
     | 
| 1573 | 
         
            +
                "126276": {
         
     | 
| 1574 | 
         
            +
                  "content": "<|reserved_token_192|>",
         
     | 
| 1575 | 
         
            +
                  "lstrip": false,
         
     | 
| 1576 | 
         
            +
                  "normalized": false,
         
     | 
| 1577 | 
         
            +
                  "rstrip": false,
         
     | 
| 1578 | 
         
            +
                  "single_word": false,
         
     | 
| 1579 | 
         
            +
                  "special": true
         
     | 
| 1580 | 
         
            +
                },
         
     | 
| 1581 | 
         
            +
                "126277": {
         
     | 
| 1582 | 
         
            +
                  "content": "<|reserved_token_193|>",
         
     | 
| 1583 | 
         
            +
                  "lstrip": false,
         
     | 
| 1584 | 
         
            +
                  "normalized": false,
         
     | 
| 1585 | 
         
            +
                  "rstrip": false,
         
     | 
| 1586 | 
         
            +
                  "single_word": false,
         
     | 
| 1587 | 
         
            +
                  "special": true
         
     | 
| 1588 | 
         
            +
                },
         
     | 
| 1589 | 
         
            +
                "126278": {
         
     | 
| 1590 | 
         
            +
                  "content": "<|reserved_token_194|>",
         
     | 
| 1591 | 
         
            +
                  "lstrip": false,
         
     | 
| 1592 | 
         
            +
                  "normalized": false,
         
     | 
| 1593 | 
         
            +
                  "rstrip": false,
         
     | 
| 1594 | 
         
            +
                  "single_word": false,
         
     | 
| 1595 | 
         
            +
                  "special": true
         
     | 
| 1596 | 
         
            +
                },
         
     | 
| 1597 | 
         
            +
                "126279": {
         
     | 
| 1598 | 
         
            +
                  "content": "<|reserved_token_195|>",
         
     | 
| 1599 | 
         
            +
                  "lstrip": false,
         
     | 
| 1600 | 
         
            +
                  "normalized": false,
         
     | 
| 1601 | 
         
            +
                  "rstrip": false,
         
     | 
| 1602 | 
         
            +
                  "single_word": false,
         
     | 
| 1603 | 
         
            +
                  "special": true
         
     | 
| 1604 | 
         
            +
                },
         
     | 
| 1605 | 
         
            +
                "126280": {
         
     | 
| 1606 | 
         
            +
                  "content": "<|reserved_token_196|>",
         
     | 
| 1607 | 
         
            +
                  "lstrip": false,
         
     | 
| 1608 | 
         
            +
                  "normalized": false,
         
     | 
| 1609 | 
         
            +
                  "rstrip": false,
         
     | 
| 1610 | 
         
            +
                  "single_word": false,
         
     | 
| 1611 | 
         
            +
                  "special": true
         
     | 
| 1612 | 
         
            +
                },
         
     | 
| 1613 | 
         
            +
                "126281": {
         
     | 
| 1614 | 
         
            +
                  "content": "<|reserved_token_197|>",
         
     | 
| 1615 | 
         
            +
                  "lstrip": false,
         
     | 
| 1616 | 
         
            +
                  "normalized": false,
         
     | 
| 1617 | 
         
            +
                  "rstrip": false,
         
     | 
| 1618 | 
         
            +
                  "single_word": false,
         
     | 
| 1619 | 
         
            +
                  "special": true
         
     | 
| 1620 | 
         
            +
                },
         
     | 
| 1621 | 
         
            +
                "126282": {
         
     | 
| 1622 | 
         
            +
                  "content": "<|reserved_token_198|>",
         
     | 
| 1623 | 
         
            +
                  "lstrip": false,
         
     | 
| 1624 | 
         
            +
                  "normalized": false,
         
     | 
| 1625 | 
         
            +
                  "rstrip": false,
         
     | 
| 1626 | 
         
            +
                  "single_word": false,
         
     | 
| 1627 | 
         
            +
                  "special": true
         
     | 
| 1628 | 
         
            +
                },
         
     | 
| 1629 | 
         
            +
                "126283": {
         
     | 
| 1630 | 
         
            +
                  "content": "<|reserved_token_199|>",
         
     | 
| 1631 | 
         
            +
                  "lstrip": false,
         
     | 
| 1632 | 
         
            +
                  "normalized": false,
         
     | 
| 1633 | 
         
            +
                  "rstrip": false,
         
     | 
| 1634 | 
         
            +
                  "single_word": false,
         
     | 
| 1635 | 
         
            +
                  "special": true
         
     | 
| 1636 | 
         
            +
                },
         
     | 
| 1637 | 
         
            +
                "126284": {
         
     | 
| 1638 | 
         
            +
                  "content": "<|reserved_token_200|>",
         
     | 
| 1639 | 
         
            +
                  "lstrip": false,
         
     | 
| 1640 | 
         
            +
                  "normalized": false,
         
     | 
| 1641 | 
         
            +
                  "rstrip": false,
         
     | 
| 1642 | 
         
            +
                  "single_word": false,
         
     | 
| 1643 | 
         
            +
                  "special": true
         
     | 
| 1644 | 
         
            +
                },
         
     | 
| 1645 | 
         
            +
                "126285": {
         
     | 
| 1646 | 
         
            +
                  "content": "<|reserved_token_201|>",
         
     | 
| 1647 | 
         
            +
                  "lstrip": false,
         
     | 
| 1648 | 
         
            +
                  "normalized": false,
         
     | 
| 1649 | 
         
            +
                  "rstrip": false,
         
     | 
| 1650 | 
         
            +
                  "single_word": false,
         
     | 
| 1651 | 
         
            +
                  "special": true
         
     | 
| 1652 | 
         
            +
                },
         
     | 
| 1653 | 
         
            +
                "126286": {
         
     | 
| 1654 | 
         
            +
                  "content": "<|reserved_token_202|>",
         
     | 
| 1655 | 
         
            +
                  "lstrip": false,
         
     | 
| 1656 | 
         
            +
                  "normalized": false,
         
     | 
| 1657 | 
         
            +
                  "rstrip": false,
         
     | 
| 1658 | 
         
            +
                  "single_word": false,
         
     | 
| 1659 | 
         
            +
                  "special": true
         
     | 
| 1660 | 
         
            +
                },
         
     | 
| 1661 | 
         
            +
                "126287": {
         
     | 
| 1662 | 
         
            +
                  "content": "<|reserved_token_203|>",
         
     | 
| 1663 | 
         
            +
                  "lstrip": false,
         
     | 
| 1664 | 
         
            +
                  "normalized": false,
         
     | 
| 1665 | 
         
            +
                  "rstrip": false,
         
     | 
| 1666 | 
         
            +
                  "single_word": false,
         
     | 
| 1667 | 
         
            +
                  "special": true
         
     | 
| 1668 | 
         
            +
                },
         
     | 
| 1669 | 
         
            +
                "126288": {
         
     | 
| 1670 | 
         
            +
                  "content": "<|reserved_token_204|>",
         
     | 
| 1671 | 
         
            +
                  "lstrip": false,
         
     | 
| 1672 | 
         
            +
                  "normalized": false,
         
     | 
| 1673 | 
         
            +
                  "rstrip": false,
         
     | 
| 1674 | 
         
            +
                  "single_word": false,
         
     | 
| 1675 | 
         
            +
                  "special": true
         
     | 
| 1676 | 
         
            +
                },
         
     | 
| 1677 | 
         
            +
                "126289": {
         
     | 
| 1678 | 
         
            +
                  "content": "<|reserved_token_205|>",
         
     | 
| 1679 | 
         
            +
                  "lstrip": false,
         
     | 
| 1680 | 
         
            +
                  "normalized": false,
         
     | 
| 1681 | 
         
            +
                  "rstrip": false,
         
     | 
| 1682 | 
         
            +
                  "single_word": false,
         
     | 
| 1683 | 
         
            +
                  "special": true
         
     | 
| 1684 | 
         
            +
                },
         
     | 
| 1685 | 
         
            +
                "126290": {
         
     | 
| 1686 | 
         
            +
                  "content": "<|reserved_token_206|>",
         
     | 
| 1687 | 
         
            +
                  "lstrip": false,
         
     | 
| 1688 | 
         
            +
                  "normalized": false,
         
     | 
| 1689 | 
         
            +
                  "rstrip": false,
         
     | 
| 1690 | 
         
            +
                  "single_word": false,
         
     | 
| 1691 | 
         
            +
                  "special": true
         
     | 
| 1692 | 
         
            +
                },
         
     | 
| 1693 | 
         
            +
                "126291": {
         
     | 
| 1694 | 
         
            +
                  "content": "<|reserved_token_207|>",
         
     | 
| 1695 | 
         
            +
                  "lstrip": false,
         
     | 
| 1696 | 
         
            +
                  "normalized": false,
         
     | 
| 1697 | 
         
            +
                  "rstrip": false,
         
     | 
| 1698 | 
         
            +
                  "single_word": false,
         
     | 
| 1699 | 
         
            +
                  "special": true
         
     | 
| 1700 | 
         
            +
                },
         
     | 
| 1701 | 
         
            +
                "126292": {
         
     | 
| 1702 | 
         
            +
                  "content": "<|reserved_token_208|>",
         
     | 
| 1703 | 
         
            +
                  "lstrip": false,
         
     | 
| 1704 | 
         
            +
                  "normalized": false,
         
     | 
| 1705 | 
         
            +
                  "rstrip": false,
         
     | 
| 1706 | 
         
            +
                  "single_word": false,
         
     | 
| 1707 | 
         
            +
                  "special": true
         
     | 
| 1708 | 
         
            +
                },
         
     | 
| 1709 | 
         
            +
                "126293": {
         
     | 
| 1710 | 
         
            +
                  "content": "<|reserved_token_209|>",
         
     | 
| 1711 | 
         
            +
                  "lstrip": false,
         
     | 
| 1712 | 
         
            +
                  "normalized": false,
         
     | 
| 1713 | 
         
            +
                  "rstrip": false,
         
     | 
| 1714 | 
         
            +
                  "single_word": false,
         
     | 
| 1715 | 
         
            +
                  "special": true
         
     | 
| 1716 | 
         
            +
                },
         
     | 
| 1717 | 
         
            +
                "126294": {
         
     | 
| 1718 | 
         
            +
                  "content": "<|reserved_token_210|>",
         
     | 
| 1719 | 
         
            +
                  "lstrip": false,
         
     | 
| 1720 | 
         
            +
                  "normalized": false,
         
     | 
| 1721 | 
         
            +
                  "rstrip": false,
         
     | 
| 1722 | 
         
            +
                  "single_word": false,
         
     | 
| 1723 | 
         
            +
                  "special": true
         
     | 
| 1724 | 
         
            +
                },
         
     | 
| 1725 | 
         
            +
                "126295": {
         
     | 
| 1726 | 
         
            +
                  "content": "<|reserved_token_211|>",
         
     | 
| 1727 | 
         
            +
                  "lstrip": false,
         
     | 
| 1728 | 
         
            +
                  "normalized": false,
         
     | 
| 1729 | 
         
            +
                  "rstrip": false,
         
     | 
| 1730 | 
         
            +
                  "single_word": false,
         
     | 
| 1731 | 
         
            +
                  "special": true
         
     | 
| 1732 | 
         
            +
                },
         
     | 
| 1733 | 
         
            +
                "126296": {
         
     | 
| 1734 | 
         
            +
                  "content": "<|reserved_token_212|>",
         
     | 
| 1735 | 
         
            +
                  "lstrip": false,
         
     | 
| 1736 | 
         
            +
                  "normalized": false,
         
     | 
| 1737 | 
         
            +
                  "rstrip": false,
         
     | 
| 1738 | 
         
            +
                  "single_word": false,
         
     | 
| 1739 | 
         
            +
                  "special": true
         
     | 
| 1740 | 
         
            +
                },
         
     | 
| 1741 | 
         
            +
                "126297": {
         
     | 
| 1742 | 
         
            +
                  "content": "<|reserved_token_213|>",
         
     | 
| 1743 | 
         
            +
                  "lstrip": false,
         
     | 
| 1744 | 
         
            +
                  "normalized": false,
         
     | 
| 1745 | 
         
            +
                  "rstrip": false,
         
     | 
| 1746 | 
         
            +
                  "single_word": false,
         
     | 
| 1747 | 
         
            +
                  "special": true
         
     | 
| 1748 | 
         
            +
                },
         
     | 
| 1749 | 
         
            +
                "126298": {
         
     | 
| 1750 | 
         
            +
                  "content": "<|reserved_token_214|>",
         
     | 
| 1751 | 
         
            +
                  "lstrip": false,
         
     | 
| 1752 | 
         
            +
                  "normalized": false,
         
     | 
| 1753 | 
         
            +
                  "rstrip": false,
         
     | 
| 1754 | 
         
            +
                  "single_word": false,
         
     | 
| 1755 | 
         
            +
                  "special": true
         
     | 
| 1756 | 
         
            +
                },
         
     | 
| 1757 | 
         
            +
                "126299": {
         
     | 
| 1758 | 
         
            +
                  "content": "<|reserved_token_215|>",
         
     | 
| 1759 | 
         
            +
                  "lstrip": false,
         
     | 
| 1760 | 
         
            +
                  "normalized": false,
         
     | 
| 1761 | 
         
            +
                  "rstrip": false,
         
     | 
| 1762 | 
         
            +
                  "single_word": false,
         
     | 
| 1763 | 
         
            +
                  "special": true
         
     | 
| 1764 | 
         
            +
                },
         
     | 
| 1765 | 
         
            +
                "126300": {
         
     | 
| 1766 | 
         
            +
                  "content": "<|reserved_token_216|>",
         
     | 
| 1767 | 
         
            +
                  "lstrip": false,
         
     | 
| 1768 | 
         
            +
                  "normalized": false,
         
     | 
| 1769 | 
         
            +
                  "rstrip": false,
         
     | 
| 1770 | 
         
            +
                  "single_word": false,
         
     | 
| 1771 | 
         
            +
                  "special": true
         
     | 
| 1772 | 
         
            +
                },
         
     | 
| 1773 | 
         
            +
                "126301": {
         
     | 
| 1774 | 
         
            +
                  "content": "<|reserved_token_217|>",
         
     | 
| 1775 | 
         
            +
                  "lstrip": false,
         
     | 
| 1776 | 
         
            +
                  "normalized": false,
         
     | 
| 1777 | 
         
            +
                  "rstrip": false,
         
     | 
| 1778 | 
         
            +
                  "single_word": false,
         
     | 
| 1779 | 
         
            +
                  "special": true
         
     | 
| 1780 | 
         
            +
                },
         
     | 
| 1781 | 
         
            +
                "126302": {
         
     | 
| 1782 | 
         
            +
                  "content": "<|reserved_token_218|>",
         
     | 
| 1783 | 
         
            +
                  "lstrip": false,
         
     | 
| 1784 | 
         
            +
                  "normalized": false,
         
     | 
| 1785 | 
         
            +
                  "rstrip": false,
         
     | 
| 1786 | 
         
            +
                  "single_word": false,
         
     | 
| 1787 | 
         
            +
                  "special": true
         
     | 
| 1788 | 
         
            +
                },
         
     | 
| 1789 | 
         
            +
                "126303": {
         
     | 
| 1790 | 
         
            +
                  "content": "<|reserved_token_219|>",
         
     | 
| 1791 | 
         
            +
                  "lstrip": false,
         
     | 
| 1792 | 
         
            +
                  "normalized": false,
         
     | 
| 1793 | 
         
            +
                  "rstrip": false,
         
     | 
| 1794 | 
         
            +
                  "single_word": false,
         
     | 
| 1795 | 
         
            +
                  "special": true
         
     | 
| 1796 | 
         
            +
                },
         
     | 
| 1797 | 
         
            +
                "126304": {
         
     | 
| 1798 | 
         
            +
                  "content": "<|reserved_token_220|>",
         
     | 
| 1799 | 
         
            +
                  "lstrip": false,
         
     | 
| 1800 | 
         
            +
                  "normalized": false,
         
     | 
| 1801 | 
         
            +
                  "rstrip": false,
         
     | 
| 1802 | 
         
            +
                  "single_word": false,
         
     | 
| 1803 | 
         
            +
                  "special": true
         
     | 
| 1804 | 
         
            +
                },
         
     | 
| 1805 | 
         
            +
                "126305": {
         
     | 
| 1806 | 
         
            +
                  "content": "<|reserved_token_221|>",
         
     | 
| 1807 | 
         
            +
                  "lstrip": false,
         
     | 
| 1808 | 
         
            +
                  "normalized": false,
         
     | 
| 1809 | 
         
            +
                  "rstrip": false,
         
     | 
| 1810 | 
         
            +
                  "single_word": false,
         
     | 
| 1811 | 
         
            +
                  "special": true
         
     | 
| 1812 | 
         
            +
                },
         
     | 
| 1813 | 
         
            +
                "126306": {
         
     | 
| 1814 | 
         
            +
                  "content": "<|reserved_token_222|>",
         
     | 
| 1815 | 
         
            +
                  "lstrip": false,
         
     | 
| 1816 | 
         
            +
                  "normalized": false,
         
     | 
| 1817 | 
         
            +
                  "rstrip": false,
         
     | 
| 1818 | 
         
            +
                  "single_word": false,
         
     | 
| 1819 | 
         
            +
                  "special": true
         
     | 
| 1820 | 
         
            +
                },
         
     | 
| 1821 | 
         
            +
                "126307": {
         
     | 
| 1822 | 
         
            +
                  "content": "<|reserved_token_223|>",
         
     | 
| 1823 | 
         
            +
                  "lstrip": false,
         
     | 
| 1824 | 
         
            +
                  "normalized": false,
         
     | 
| 1825 | 
         
            +
                  "rstrip": false,
         
     | 
| 1826 | 
         
            +
                  "single_word": false,
         
     | 
| 1827 | 
         
            +
                  "special": true
         
     | 
| 1828 | 
         
            +
                },
         
     | 
| 1829 | 
         
            +
                "126308": {
         
     | 
| 1830 | 
         
            +
                  "content": "<|reserved_token_224|>",
         
     | 
| 1831 | 
         
            +
                  "lstrip": false,
         
     | 
| 1832 | 
         
            +
                  "normalized": false,
         
     | 
| 1833 | 
         
            +
                  "rstrip": false,
         
     | 
| 1834 | 
         
            +
                  "single_word": false,
         
     | 
| 1835 | 
         
            +
                  "special": true
         
     | 
| 1836 | 
         
            +
                },
         
     | 
| 1837 | 
         
            +
                "126309": {
         
     | 
| 1838 | 
         
            +
                  "content": "<|reserved_token_225|>",
         
     | 
| 1839 | 
         
            +
                  "lstrip": false,
         
     | 
| 1840 | 
         
            +
                  "normalized": false,
         
     | 
| 1841 | 
         
            +
                  "rstrip": false,
         
     | 
| 1842 | 
         
            +
                  "single_word": false,
         
     | 
| 1843 | 
         
            +
                  "special": true
         
     | 
| 1844 | 
         
            +
                },
         
     | 
| 1845 | 
         
            +
                "126310": {
         
     | 
| 1846 | 
         
            +
                  "content": "<|reserved_token_226|>",
         
     | 
| 1847 | 
         
            +
                  "lstrip": false,
         
     | 
| 1848 | 
         
            +
                  "normalized": false,
         
     | 
| 1849 | 
         
            +
                  "rstrip": false,
         
     | 
| 1850 | 
         
            +
                  "single_word": false,
         
     | 
| 1851 | 
         
            +
                  "special": true
         
     | 
| 1852 | 
         
            +
                },
         
     | 
| 1853 | 
         
            +
                "126311": {
         
     | 
| 1854 | 
         
            +
                  "content": "<|reserved_token_227|>",
         
     | 
| 1855 | 
         
            +
                  "lstrip": false,
         
     | 
| 1856 | 
         
            +
                  "normalized": false,
         
     | 
| 1857 | 
         
            +
                  "rstrip": false,
         
     | 
| 1858 | 
         
            +
                  "single_word": false,
         
     | 
| 1859 | 
         
            +
                  "special": true
         
     | 
| 1860 | 
         
            +
                },
         
     | 
| 1861 | 
         
            +
                "126312": {
         
     | 
| 1862 | 
         
            +
                  "content": "<|reserved_token_228|>",
         
     | 
| 1863 | 
         
            +
                  "lstrip": false,
         
     | 
| 1864 | 
         
            +
                  "normalized": false,
         
     | 
| 1865 | 
         
            +
                  "rstrip": false,
         
     | 
| 1866 | 
         
            +
                  "single_word": false,
         
     | 
| 1867 | 
         
            +
                  "special": true
         
     | 
| 1868 | 
         
            +
                },
         
     | 
| 1869 | 
         
            +
                "126313": {
         
     | 
| 1870 | 
         
            +
                  "content": "<|reserved_token_229|>",
         
     | 
| 1871 | 
         
            +
                  "lstrip": false,
         
     | 
| 1872 | 
         
            +
                  "normalized": false,
         
     | 
| 1873 | 
         
            +
                  "rstrip": false,
         
     | 
| 1874 | 
         
            +
                  "single_word": false,
         
     | 
| 1875 | 
         
            +
                  "special": true
         
     | 
| 1876 | 
         
            +
                },
         
     | 
| 1877 | 
         
            +
                "126314": {
         
     | 
| 1878 | 
         
            +
                  "content": "<|reserved_token_230|>",
         
     | 
| 1879 | 
         
            +
                  "lstrip": false,
         
     | 
| 1880 | 
         
            +
                  "normalized": false,
         
     | 
| 1881 | 
         
            +
                  "rstrip": false,
         
     | 
| 1882 | 
         
            +
                  "single_word": false,
         
     | 
| 1883 | 
         
            +
                  "special": true
         
     | 
| 1884 | 
         
            +
                },
         
     | 
| 1885 | 
         
            +
                "126315": {
         
     | 
| 1886 | 
         
            +
                  "content": "<|reserved_token_231|>",
         
     | 
| 1887 | 
         
            +
                  "lstrip": false,
         
     | 
| 1888 | 
         
            +
                  "normalized": false,
         
     | 
| 1889 | 
         
            +
                  "rstrip": false,
         
     | 
| 1890 | 
         
            +
                  "single_word": false,
         
     | 
| 1891 | 
         
            +
                  "special": true
         
     | 
| 1892 | 
         
            +
                },
         
     | 
| 1893 | 
         
            +
                "126316": {
         
     | 
| 1894 | 
         
            +
                  "content": "<|reserved_token_232|>",
         
     | 
| 1895 | 
         
            +
                  "lstrip": false,
         
     | 
| 1896 | 
         
            +
                  "normalized": false,
         
     | 
| 1897 | 
         
            +
                  "rstrip": false,
         
     | 
| 1898 | 
         
            +
                  "single_word": false,
         
     | 
| 1899 | 
         
            +
                  "special": true
         
     | 
| 1900 | 
         
            +
                },
         
     | 
| 1901 | 
         
            +
                "126317": {
         
     | 
| 1902 | 
         
            +
                  "content": "<|reserved_token_233|>",
         
     | 
| 1903 | 
         
            +
                  "lstrip": false,
         
     | 
| 1904 | 
         
            +
                  "normalized": false,
         
     | 
| 1905 | 
         
            +
                  "rstrip": false,
         
     | 
| 1906 | 
         
            +
                  "single_word": false,
         
     | 
| 1907 | 
         
            +
                  "special": true
         
     | 
| 1908 | 
         
            +
                },
         
     | 
| 1909 | 
         
            +
                "126318": {
         
     | 
| 1910 | 
         
            +
                  "content": "<|reserved_token_234|>",
         
     | 
| 1911 | 
         
            +
                  "lstrip": false,
         
     | 
| 1912 | 
         
            +
                  "normalized": false,
         
     | 
| 1913 | 
         
            +
                  "rstrip": false,
         
     | 
| 1914 | 
         
            +
                  "single_word": false,
         
     | 
| 1915 | 
         
            +
                  "special": true
         
     | 
| 1916 | 
         
            +
                },
         
     | 
| 1917 | 
         
            +
                "126319": {
         
     | 
| 1918 | 
         
            +
                  "content": "<|reserved_token_235|>",
         
     | 
| 1919 | 
         
            +
                  "lstrip": false,
         
     | 
| 1920 | 
         
            +
                  "normalized": false,
         
     | 
| 1921 | 
         
            +
                  "rstrip": false,
         
     | 
| 1922 | 
         
            +
                  "single_word": false,
         
     | 
| 1923 | 
         
            +
                  "special": true
         
     | 
| 1924 | 
         
            +
                },
         
     | 
| 1925 | 
         
            +
                "126320": {
         
     | 
| 1926 | 
         
            +
                  "content": "<|reserved_token_236|>",
         
     | 
| 1927 | 
         
            +
                  "lstrip": false,
         
     | 
| 1928 | 
         
            +
                  "normalized": false,
         
     | 
| 1929 | 
         
            +
                  "rstrip": false,
         
     | 
| 1930 | 
         
            +
                  "single_word": false,
         
     | 
| 1931 | 
         
            +
                  "special": true
         
     | 
| 1932 | 
         
            +
                },
         
     | 
| 1933 | 
         
            +
                "126321": {
         
     | 
| 1934 | 
         
            +
                  "content": "<|reserved_token_237|>",
         
     | 
| 1935 | 
         
            +
                  "lstrip": false,
         
     | 
| 1936 | 
         
            +
                  "normalized": false,
         
     | 
| 1937 | 
         
            +
                  "rstrip": false,
         
     | 
| 1938 | 
         
            +
                  "single_word": false,
         
     | 
| 1939 | 
         
            +
                  "special": true
         
     | 
| 1940 | 
         
            +
                },
         
     | 
| 1941 | 
         
            +
                "126322": {
         
     | 
| 1942 | 
         
            +
                  "content": "<|reserved_token_238|>",
         
     | 
| 1943 | 
         
            +
                  "lstrip": false,
         
     | 
| 1944 | 
         
            +
                  "normalized": false,
         
     | 
| 1945 | 
         
            +
                  "rstrip": false,
         
     | 
| 1946 | 
         
            +
                  "single_word": false,
         
     | 
| 1947 | 
         
            +
                  "special": true
         
     | 
| 1948 | 
         
            +
                },
         
     | 
| 1949 | 
         
            +
                "126323": {
         
     | 
| 1950 | 
         
            +
                  "content": "<|reserved_token_239|>",
         
     | 
| 1951 | 
         
            +
                  "lstrip": false,
         
     | 
| 1952 | 
         
            +
                  "normalized": false,
         
     | 
| 1953 | 
         
            +
                  "rstrip": false,
         
     | 
| 1954 | 
         
            +
                  "single_word": false,
         
     | 
| 1955 | 
         
            +
                  "special": true
         
     | 
| 1956 | 
         
            +
                },
         
     | 
| 1957 | 
         
            +
                "126324": {
         
     | 
| 1958 | 
         
            +
                  "content": "<|reserved_token_240|>",
         
     | 
| 1959 | 
         
            +
                  "lstrip": false,
         
     | 
| 1960 | 
         
            +
                  "normalized": false,
         
     | 
| 1961 | 
         
            +
                  "rstrip": false,
         
     | 
| 1962 | 
         
            +
                  "single_word": false,
         
     | 
| 1963 | 
         
            +
                  "special": true
         
     | 
| 1964 | 
         
            +
                },
         
     | 
| 1965 | 
         
            +
                "126325": {
         
     | 
| 1966 | 
         
            +
                  "content": "<|reserved_token_241|>",
         
     | 
| 1967 | 
         
            +
                  "lstrip": false,
         
     | 
| 1968 | 
         
            +
                  "normalized": false,
         
     | 
| 1969 | 
         
            +
                  "rstrip": false,
         
     | 
| 1970 | 
         
            +
                  "single_word": false,
         
     | 
| 1971 | 
         
            +
                  "special": true
         
     | 
| 1972 | 
         
            +
                },
         
     | 
| 1973 | 
         
            +
                "126326": {
         
     | 
| 1974 | 
         
            +
                  "content": "<|reserved_token_242|>",
         
     | 
| 1975 | 
         
            +
                  "lstrip": false,
         
     | 
| 1976 | 
         
            +
                  "normalized": false,
         
     | 
| 1977 | 
         
            +
                  "rstrip": false,
         
     | 
| 1978 | 
         
            +
                  "single_word": false,
         
     | 
| 1979 | 
         
            +
                  "special": true
         
     | 
| 1980 | 
         
            +
                },
         
     | 
| 1981 | 
         
            +
                "126327": {
         
     | 
| 1982 | 
         
            +
                  "content": "<|reserved_token_243|>",
         
     | 
| 1983 | 
         
            +
                  "lstrip": false,
         
     | 
| 1984 | 
         
            +
                  "normalized": false,
         
     | 
| 1985 | 
         
            +
                  "rstrip": false,
         
     | 
| 1986 | 
         
            +
                  "single_word": false,
         
     | 
| 1987 | 
         
            +
                  "special": true
         
     | 
| 1988 | 
         
            +
                },
         
     | 
| 1989 | 
         
            +
                "126328": {
         
     | 
| 1990 | 
         
            +
                  "content": "<|reserved_token_244|>",
         
     | 
| 1991 | 
         
            +
                  "lstrip": false,
         
     | 
| 1992 | 
         
            +
                  "normalized": false,
         
     | 
| 1993 | 
         
            +
                  "rstrip": false,
         
     | 
| 1994 | 
         
            +
                  "single_word": false,
         
     | 
| 1995 | 
         
            +
                  "special": true
         
     | 
| 1996 | 
         
            +
                },
         
     | 
| 1997 | 
         
            +
                "126329": {
         
     | 
| 1998 | 
         
            +
                  "content": "<|reserved_token_245|>",
         
     | 
| 1999 | 
         
            +
                  "lstrip": false,
         
     | 
| 2000 | 
         
            +
                  "normalized": false,
         
     | 
| 2001 | 
         
            +
                  "rstrip": false,
         
     | 
| 2002 | 
         
            +
                  "single_word": false,
         
     | 
| 2003 | 
         
            +
                  "special": true
         
     | 
| 2004 | 
         
            +
                },
         
     | 
| 2005 | 
         
            +
                "126330": {
         
     | 
| 2006 | 
         
            +
                  "content": "<|reserved_token_246|>",
         
     | 
| 2007 | 
         
            +
                  "lstrip": false,
         
     | 
| 2008 | 
         
            +
                  "normalized": false,
         
     | 
| 2009 | 
         
            +
                  "rstrip": false,
         
     | 
| 2010 | 
         
            +
                  "single_word": false,
         
     | 
| 2011 | 
         
            +
                  "special": true
         
     | 
| 2012 | 
         
            +
                },
         
     | 
| 2013 | 
         
            +
                "126331": {
         
     | 
| 2014 | 
         
            +
                  "content": "<|reserved_token_247|>",
         
     | 
| 2015 | 
         
            +
                  "lstrip": false,
         
     | 
| 2016 | 
         
            +
                  "normalized": false,
         
     | 
| 2017 | 
         
            +
                  "rstrip": false,
         
     | 
| 2018 | 
         
            +
                  "single_word": false,
         
     | 
| 2019 | 
         
            +
                  "special": true
         
     | 
| 2020 | 
         
            +
                },
         
     | 
| 2021 | 
         
            +
                "126332": {
         
     | 
| 2022 | 
         
            +
                  "content": "<|reserved_token_248|>",
         
     | 
| 2023 | 
         
            +
                  "lstrip": false,
         
     | 
| 2024 | 
         
            +
                  "normalized": false,
         
     | 
| 2025 | 
         
            +
                  "rstrip": false,
         
     | 
| 2026 | 
         
            +
                  "single_word": false,
         
     | 
| 2027 | 
         
            +
                  "special": true
         
     | 
| 2028 | 
         
            +
                },
         
     | 
| 2029 | 
         
            +
                "126333": {
         
     | 
| 2030 | 
         
            +
                  "content": "<|reserved_token_249|>",
         
     | 
| 2031 | 
         
            +
                  "lstrip": false,
         
     | 
| 2032 | 
         
            +
                  "normalized": false,
         
     | 
| 2033 | 
         
            +
                  "rstrip": false,
         
     | 
| 2034 | 
         
            +
                  "single_word": false,
         
     | 
| 2035 | 
         
            +
                  "special": true
         
     | 
| 2036 | 
         
            +
                },
         
     | 
| 2037 | 
         
            +
                "126334": {
         
     | 
| 2038 | 
         
            +
                  "content": "<|reserved_token_250|>",
         
     | 
| 2039 | 
         
            +
                  "lstrip": false,
         
     | 
| 2040 | 
         
            +
                  "normalized": false,
         
     | 
| 2041 | 
         
            +
                  "rstrip": false,
         
     | 
| 2042 | 
         
            +
                  "single_word": false,
         
     | 
| 2043 | 
         
            +
                  "special": true
         
     | 
| 2044 | 
         
            +
                },
         
     | 
| 2045 | 
         
            +
                "126335": {
         
     | 
| 2046 | 
         
            +
                  "content": "<|reserved_token_251|>",
         
     | 
| 2047 | 
         
            +
                  "lstrip": false,
         
     | 
| 2048 | 
         
            +
                  "normalized": false,
         
     | 
| 2049 | 
         
            +
                  "rstrip": false,
         
     | 
| 2050 | 
         
            +
                  "single_word": false,
         
     | 
| 2051 | 
         
            +
                  "special": true
         
     | 
| 2052 | 
         
            +
                },
         
     | 
| 2053 | 
         
            +
                "126336": {
         
     | 
| 2054 | 
         
            +
                  "content": "<|mdm_mask|>",
         
     | 
| 2055 | 
         
            +
                  "lstrip": false,
         
     | 
| 2056 | 
         
            +
                  "normalized": false,
         
     | 
| 2057 | 
         
            +
                  "rstrip": false,
         
     | 
| 2058 | 
         
            +
                  "single_word": false,
         
     | 
| 2059 | 
         
            +
                  "special": true
         
     | 
| 2060 | 
         
            +
                },
         
     | 
| 2061 | 
         
            +
                "126337": {
         
     | 
| 2062 | 
         
            +
                  "content": "<|reserved_token_253|>",
         
     | 
| 2063 | 
         
            +
                  "lstrip": false,
         
     | 
| 2064 | 
         
            +
                  "normalized": false,
         
     | 
| 2065 | 
         
            +
                  "rstrip": false,
         
     | 
| 2066 | 
         
            +
                  "single_word": false,
         
     | 
| 2067 | 
         
            +
                  "special": true
         
     | 
| 2068 | 
         
            +
                },
         
     | 
| 2069 | 
         
            +
                "126338": {
         
     | 
| 2070 | 
         
            +
                  "content": "<|reserved_token_254|>",
         
     | 
| 2071 | 
         
            +
                  "lstrip": false,
         
     | 
| 2072 | 
         
            +
                  "normalized": false,
         
     | 
| 2073 | 
         
            +
                  "rstrip": false,
         
     | 
| 2074 | 
         
            +
                  "single_word": false,
         
     | 
| 2075 | 
         
            +
                  "special": true
         
     | 
| 2076 | 
         
            +
                },
         
     | 
| 2077 | 
         
            +
                "126339": {
         
     | 
| 2078 | 
         
            +
                  "content": "<|reserved_token_255|>",
         
     | 
| 2079 | 
         
            +
                  "lstrip": false,
         
     | 
| 2080 | 
         
            +
                  "normalized": false,
         
     | 
| 2081 | 
         
            +
                  "rstrip": false,
         
     | 
| 2082 | 
         
            +
                  "single_word": false,
         
     | 
| 2083 | 
         
            +
                  "special": true
         
     | 
| 2084 | 
         
            +
                },
         
     | 
| 2085 | 
         
            +
                "126340": {
         
     | 
| 2086 | 
         
            +
                  "content": "<role>",
         
     | 
| 2087 | 
         
            +
                  "lstrip": false,
         
     | 
| 2088 | 
         
            +
                  "normalized": false,
         
     | 
| 2089 | 
         
            +
                  "rstrip": false,
         
     | 
| 2090 | 
         
            +
                  "single_word": false,
         
     | 
| 2091 | 
         
            +
                  "special": true
         
     | 
| 2092 | 
         
            +
                },
         
     | 
| 2093 | 
         
            +
                "126341": {
         
     | 
| 2094 | 
         
            +
                  "content": "</role>",
         
     | 
| 2095 | 
         
            +
                  "lstrip": false,
         
     | 
| 2096 | 
         
            +
                  "normalized": false,
         
     | 
| 2097 | 
         
            +
                  "rstrip": false,
         
     | 
| 2098 | 
         
            +
                  "single_word": false,
         
     | 
| 2099 | 
         
            +
                  "special": true
         
     | 
| 2100 | 
         
            +
                },
         
     | 
| 2101 | 
         
            +
                "126342": {
         
     | 
| 2102 | 
         
            +
                  "content": "<|arithmetic_start|>",
         
     | 
| 2103 | 
         
            +
                  "lstrip": false,
         
     | 
| 2104 | 
         
            +
                  "normalized": false,
         
     | 
| 2105 | 
         
            +
                  "rstrip": false,
         
     | 
| 2106 | 
         
            +
                  "single_word": false,
         
     | 
| 2107 | 
         
            +
                  "special": true
         
     | 
| 2108 | 
         
            +
                },
         
     | 
| 2109 | 
         
            +
                "126343": {
         
     | 
| 2110 | 
         
            +
                  "content": "<|arithmetic_end|>",
         
     | 
| 2111 | 
         
            +
                  "lstrip": false,
         
     | 
| 2112 | 
         
            +
                  "normalized": false,
         
     | 
| 2113 | 
         
            +
                  "rstrip": false,
         
     | 
| 2114 | 
         
            +
                  "single_word": false,
         
     | 
| 2115 | 
         
            +
                  "special": true
         
     | 
| 2116 | 
         
            +
                },
         
     | 
| 2117 | 
         
            +
                "126344": {
         
     | 
| 2118 | 
         
            +
                  "content": "<|number_start|>",
         
     | 
| 2119 | 
         
            +
                  "lstrip": false,
         
     | 
| 2120 | 
         
            +
                  "normalized": false,
         
     | 
| 2121 | 
         
            +
                  "rstrip": false,
         
     | 
| 2122 | 
         
            +
                  "single_word": false,
         
     | 
| 2123 | 
         
            +
                  "special": true
         
     | 
| 2124 | 
         
            +
                },
         
     | 
| 2125 | 
         
            +
                "126345": {
         
     | 
| 2126 | 
         
            +
                  "content": "<|number_end|>",
         
     | 
| 2127 | 
         
            +
                  "lstrip": false,
         
     | 
| 2128 | 
         
            +
                  "normalized": false,
         
     | 
| 2129 | 
         
            +
                  "rstrip": false,
         
     | 
| 2130 | 
         
            +
                  "single_word": false,
         
     | 
| 2131 | 
         
            +
                  "special": true
         
     | 
| 2132 | 
         
            +
                },
         
     | 
| 2133 | 
         
            +
                "126346": {
         
     | 
| 2134 | 
         
            +
                  "content": "<|start_header_id|>",
         
     | 
| 2135 | 
         
            +
                  "lstrip": false,
         
     | 
| 2136 | 
         
            +
                  "normalized": false,
         
     | 
| 2137 | 
         
            +
                  "rstrip": false,
         
     | 
| 2138 | 
         
            +
                  "single_word": false,
         
     | 
| 2139 | 
         
            +
                  "special": true
         
     | 
| 2140 | 
         
            +
                },
         
     | 
| 2141 | 
         
            +
                "126347": {
         
     | 
| 2142 | 
         
            +
                  "content": "<|end_header_id|>",
         
     | 
| 2143 | 
         
            +
                  "lstrip": false,
         
     | 
| 2144 | 
         
            +
                  "normalized": false,
         
     | 
| 2145 | 
         
            +
                  "rstrip": false,
         
     | 
| 2146 | 
         
            +
                  "single_word": false,
         
     | 
| 2147 | 
         
            +
                  "special": true
         
     | 
| 2148 | 
         
            +
                },
         
     | 
| 2149 | 
         
            +
                "126348": {
         
     | 
| 2150 | 
         
            +
                  "content": "<|eot_id|>",
         
     | 
| 2151 | 
         
            +
                  "lstrip": false,
         
     | 
| 2152 | 
         
            +
                  "normalized": false,
         
     | 
| 2153 | 
         
            +
                  "rstrip": false,
         
     | 
| 2154 | 
         
            +
                  "single_word": false,
         
     | 
| 2155 | 
         
            +
                  "special": true
         
     | 
| 2156 | 
         
            +
                }
         
     | 
| 2157 | 
         
            +
              },
         
     | 
| 2158 | 
         
            +
              "additional_special_tokens": [
         
     | 
| 2159 | 
         
            +
                "<role>",
         
     | 
| 2160 | 
         
            +
                "</role>",
         
     | 
| 2161 | 
         
            +
                "<|arithmetic_start|>",
         
     | 
| 2162 | 
         
            +
                "<|arithmetic_end|>",
         
     | 
| 2163 | 
         
            +
                "<|number_start|>",
         
     | 
| 2164 | 
         
            +
                "<|number_end|>"
         
     | 
| 2165 | 
         
            +
              ],
         
     | 
| 2166 | 
         
            +
              "bos_token": "<|startoftext|>",
         
     | 
| 2167 | 
         
            +
              "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
         
     | 
| 2168 | 
         
            +
              "clean_up_tokenization_spaces": false,
         
     | 
| 2169 | 
         
            +
              "cls_token": "[CLS]",
         
     | 
| 2170 | 
         
            +
              "eos_token": "<|endoftext|>",
         
     | 
| 2171 | 
         
            +
              "fast_tokenizer": true,
         
     | 
| 2172 | 
         
            +
              "gmask_token": "[gMASK]",
         
     | 
| 2173 | 
         
            +
              "merges_file": null,
         
     | 
| 2174 | 
         
            +
              "model_input_names": [
         
     | 
| 2175 | 
         
            +
                "input_ids",
         
     | 
| 2176 | 
         
            +
                "attention_mask"
         
     | 
| 2177 | 
         
            +
              ],
         
     | 
| 2178 | 
         
            +
              "model_max_length": 1000000000000000019884624838656,
         
     | 
| 2179 | 
         
            +
              "pad_token": "<|endoftext|>",
         
     | 
| 2180 | 
         
            +
              "tokenizer_class": "PreTrainedTokenizerFast",
         
     | 
| 2181 | 
         
            +
              "trust_remote_code": true,
         
     | 
| 2182 | 
         
            +
              "vocab_file": null
         
     | 
| 2183 | 
         
            +
            }
         
     |