yuanshengni commited on
Commit
df1fd90
Β·
verified Β·
1 Parent(s): 14807b0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -8,4 +8,53 @@ base_model:
8
  - Qwen/Qwen2.5-Coder-7B-Instruct
9
  tags:
10
  - code
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - Qwen/Qwen2.5-Coder-7B-Instruct
9
  tags:
10
  - code
11
+ ---
12
+
13
+ # VisCoder-7B
14
+
15
+ [🏠 Project Page](https://tiger-ai-lab.github.io/VisCoder) | [πŸ“– Paper](https://arxiv.org/abs/2506.03930) | [πŸ’» GitHub](https://github.com/TIGER-AI-Lab/VisCoder) | [πŸ€— Dataset: VisCode-200K](https://huggingface.co/datasets/TIGER-Lab/VisCode-200K)
16
+
17
+ **VisCoder-7B** is a large language model fine-tuned for **Python visualization code generation and multi-turn self-correction**. It is trained on **VisCode-200K**, a large-scale instruction-tuning dataset that integrates validated executable code, natural language instructions, and revision supervision from execution feedback.
18
+
19
+
20
+ ## 🧠 Model Description
21
+
22
+ **VisCoder-7B** is trained on **VisCode-200K**, a large-scale instruction-tuning dataset tailored for executable Python visualization tasks. It addresses a core challenge in data analysis: generating Python code that not only executes successfully but also produces **semantically meaningful plots** by aligning **natural language instructions**, **data structures**, and **visual outputs**.
23
+
24
+ We propose a **self-debug evaluation protocol** that simulates real-world developer workflows. In this setting, models are allowed to revise previously failed generations over multiple rounds with guidance from **execution feedback**.
25
+
26
+ ## πŸ“Š Main Results on PandasPlotBench
27
+
28
+ We evaluate VisCoder-7B on [**PandasPlotBench**](https://github.com/TIGER-AI-Lab/VisCoder/tree/main/eval), which tests executable visualization code generation across three major libraries. Our benchmark covers both standard generation and **multi-round self-debugging**.
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64de37ee5e192985054be575/ZTicATvYEIVRe4OCj16GV.png)
31
+
32
+ > VisCoder-7B achieves over **90% execution pass rate** on both **Matplotlib** and **Seaborn** under the self-debug setting, outperforming open-source baselines and approaching GPT-4o performance.
33
+
34
+
35
+ ## πŸ“ Training Details
36
+
37
+ - **Base model**: Qwen2.5-Coder-7B-Instruct
38
+ - **Framework**: [ms-swift](https://github.com/modelscope/swift)
39
+ - **Tuning method**: Full-parameter supervised fine-tuning (SFT)
40
+ - **Dataset**: [VisCode-200K](https://huggingface.co/datasets/TIGER-Lab/VisCode-200K), which includes:
41
+ - 150K+ validated Python visualization samples with images
42
+ - 45K+ multi-turn correction dialogues with execution feedback
43
+
44
+ ## πŸ“– Citation
45
+
46
+ If you use VisCoder-7B or VisCode-200K in your research, please cite:
47
+
48
+ ```bibtex
49
+ @misc{ni2025viscoderfinetuningllmsexecutable,
50
+ title={VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation},
51
+ author={Yuansheng Ni and Ping Nie and Kai Zou and Xiang Yue and Wenhu Chen},
52
+ year={2025},
53
+ eprint={2506.03930},
54
+ archivePrefix={arXiv},
55
+ primaryClass={cs.SE},
56
+ url={https://arxiv.org/abs/2506.03930}
57
+ }
58
+ ```
59
+
60
+ For evaluation scripts and more information, see our [GitHub repository](https://github.com/TIGER-AI-Lab/VisCoder).