Upload folder using huggingface_hub
Browse files- added_tokens.json +145 -0
- config.json +50 -0
- configuration_gptj_moe.py +120 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +656 -0
- modeling_gptj_moe.py +671 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1166 -0
- vocab.json +0 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|extratoken_100|>": 50356,
|
| 3 |
+
"<|extratoken_101|>": 50357,
|
| 4 |
+
"<|extratoken_102|>": 50358,
|
| 5 |
+
"<|extratoken_103|>": 50359,
|
| 6 |
+
"<|extratoken_104|>": 50360,
|
| 7 |
+
"<|extratoken_105|>": 50361,
|
| 8 |
+
"<|extratoken_106|>": 50362,
|
| 9 |
+
"<|extratoken_107|>": 50363,
|
| 10 |
+
"<|extratoken_108|>": 50364,
|
| 11 |
+
"<|extratoken_109|>": 50365,
|
| 12 |
+
"<|extratoken_10|>": 50266,
|
| 13 |
+
"<|extratoken_110|>": 50366,
|
| 14 |
+
"<|extratoken_111|>": 50367,
|
| 15 |
+
"<|extratoken_112|>": 50368,
|
| 16 |
+
"<|extratoken_113|>": 50369,
|
| 17 |
+
"<|extratoken_114|>": 50370,
|
| 18 |
+
"<|extratoken_115|>": 50371,
|
| 19 |
+
"<|extratoken_116|>": 50372,
|
| 20 |
+
"<|extratoken_117|>": 50373,
|
| 21 |
+
"<|extratoken_118|>": 50374,
|
| 22 |
+
"<|extratoken_119|>": 50375,
|
| 23 |
+
"<|extratoken_11|>": 50267,
|
| 24 |
+
"<|extratoken_120|>": 50376,
|
| 25 |
+
"<|extratoken_121|>": 50377,
|
| 26 |
+
"<|extratoken_122|>": 50378,
|
| 27 |
+
"<|extratoken_123|>": 50379,
|
| 28 |
+
"<|extratoken_124|>": 50380,
|
| 29 |
+
"<|extratoken_125|>": 50381,
|
| 30 |
+
"<|extratoken_126|>": 50382,
|
| 31 |
+
"<|extratoken_127|>": 50383,
|
| 32 |
+
"<|extratoken_128|>": 50384,
|
| 33 |
+
"<|extratoken_129|>": 50385,
|
| 34 |
+
"<|extratoken_12|>": 50268,
|
| 35 |
+
"<|extratoken_130|>": 50386,
|
| 36 |
+
"<|extratoken_131|>": 50387,
|
| 37 |
+
"<|extratoken_132|>": 50388,
|
| 38 |
+
"<|extratoken_133|>": 50389,
|
| 39 |
+
"<|extratoken_134|>": 50390,
|
| 40 |
+
"<|extratoken_135|>": 50391,
|
| 41 |
+
"<|extratoken_136|>": 50392,
|
| 42 |
+
"<|extratoken_137|>": 50393,
|
| 43 |
+
"<|extratoken_138|>": 50394,
|
| 44 |
+
"<|extratoken_139|>": 50395,
|
| 45 |
+
"<|extratoken_13|>": 50269,
|
| 46 |
+
"<|extratoken_140|>": 50396,
|
| 47 |
+
"<|extratoken_141|>": 50397,
|
| 48 |
+
"<|extratoken_142|>": 50398,
|
| 49 |
+
"<|extratoken_143|>": 50399,
|
| 50 |
+
"<|extratoken_14|>": 50270,
|
| 51 |
+
"<|extratoken_15|>": 50271,
|
| 52 |
+
"<|extratoken_16|>": 50272,
|
| 53 |
+
"<|extratoken_17|>": 50273,
|
| 54 |
+
"<|extratoken_18|>": 50274,
|
| 55 |
+
"<|extratoken_19|>": 50275,
|
| 56 |
+
"<|extratoken_1|>": 50257,
|
| 57 |
+
"<|extratoken_20|>": 50276,
|
| 58 |
+
"<|extratoken_21|>": 50277,
|
| 59 |
+
"<|extratoken_22|>": 50278,
|
| 60 |
+
"<|extratoken_23|>": 50279,
|
| 61 |
+
"<|extratoken_24|>": 50280,
|
| 62 |
+
"<|extratoken_25|>": 50281,
|
| 63 |
+
"<|extratoken_26|>": 50282,
|
| 64 |
+
"<|extratoken_27|>": 50283,
|
| 65 |
+
"<|extratoken_28|>": 50284,
|
| 66 |
+
"<|extratoken_29|>": 50285,
|
| 67 |
+
"<|extratoken_2|>": 50258,
|
| 68 |
+
"<|extratoken_30|>": 50286,
|
| 69 |
+
"<|extratoken_31|>": 50287,
|
| 70 |
+
"<|extratoken_32|>": 50288,
|
| 71 |
+
"<|extratoken_33|>": 50289,
|
| 72 |
+
"<|extratoken_34|>": 50290,
|
| 73 |
+
"<|extratoken_35|>": 50291,
|
| 74 |
+
"<|extratoken_36|>": 50292,
|
| 75 |
+
"<|extratoken_37|>": 50293,
|
| 76 |
+
"<|extratoken_38|>": 50294,
|
| 77 |
+
"<|extratoken_39|>": 50295,
|
| 78 |
+
"<|extratoken_3|>": 50259,
|
| 79 |
+
"<|extratoken_40|>": 50296,
|
| 80 |
+
"<|extratoken_41|>": 50297,
|
| 81 |
+
"<|extratoken_42|>": 50298,
|
| 82 |
+
"<|extratoken_43|>": 50299,
|
| 83 |
+
"<|extratoken_44|>": 50300,
|
| 84 |
+
"<|extratoken_45|>": 50301,
|
| 85 |
+
"<|extratoken_46|>": 50302,
|
| 86 |
+
"<|extratoken_47|>": 50303,
|
| 87 |
+
"<|extratoken_48|>": 50304,
|
| 88 |
+
"<|extratoken_49|>": 50305,
|
| 89 |
+
"<|extratoken_4|>": 50260,
|
| 90 |
+
"<|extratoken_50|>": 50306,
|
| 91 |
+
"<|extratoken_51|>": 50307,
|
| 92 |
+
"<|extratoken_52|>": 50308,
|
| 93 |
+
"<|extratoken_53|>": 50309,
|
| 94 |
+
"<|extratoken_54|>": 50310,
|
| 95 |
+
"<|extratoken_55|>": 50311,
|
| 96 |
+
"<|extratoken_56|>": 50312,
|
| 97 |
+
"<|extratoken_57|>": 50313,
|
| 98 |
+
"<|extratoken_58|>": 50314,
|
| 99 |
+
"<|extratoken_59|>": 50315,
|
| 100 |
+
"<|extratoken_5|>": 50261,
|
| 101 |
+
"<|extratoken_60|>": 50316,
|
| 102 |
+
"<|extratoken_61|>": 50317,
|
| 103 |
+
"<|extratoken_62|>": 50318,
|
| 104 |
+
"<|extratoken_63|>": 50319,
|
| 105 |
+
"<|extratoken_64|>": 50320,
|
| 106 |
+
"<|extratoken_65|>": 50321,
|
| 107 |
+
"<|extratoken_66|>": 50322,
|
| 108 |
+
"<|extratoken_67|>": 50323,
|
| 109 |
+
"<|extratoken_68|>": 50324,
|
| 110 |
+
"<|extratoken_69|>": 50325,
|
| 111 |
+
"<|extratoken_6|>": 50262,
|
| 112 |
+
"<|extratoken_70|>": 50326,
|
| 113 |
+
"<|extratoken_71|>": 50327,
|
| 114 |
+
"<|extratoken_72|>": 50328,
|
| 115 |
+
"<|extratoken_73|>": 50329,
|
| 116 |
+
"<|extratoken_74|>": 50330,
|
| 117 |
+
"<|extratoken_75|>": 50331,
|
| 118 |
+
"<|extratoken_76|>": 50332,
|
| 119 |
+
"<|extratoken_77|>": 50333,
|
| 120 |
+
"<|extratoken_78|>": 50334,
|
| 121 |
+
"<|extratoken_79|>": 50335,
|
| 122 |
+
"<|extratoken_7|>": 50263,
|
| 123 |
+
"<|extratoken_80|>": 50336,
|
| 124 |
+
"<|extratoken_81|>": 50337,
|
| 125 |
+
"<|extratoken_82|>": 50338,
|
| 126 |
+
"<|extratoken_83|>": 50339,
|
| 127 |
+
"<|extratoken_84|>": 50340,
|
| 128 |
+
"<|extratoken_85|>": 50341,
|
| 129 |
+
"<|extratoken_86|>": 50342,
|
| 130 |
+
"<|extratoken_87|>": 50343,
|
| 131 |
+
"<|extratoken_88|>": 50344,
|
| 132 |
+
"<|extratoken_89|>": 50345,
|
| 133 |
+
"<|extratoken_8|>": 50264,
|
| 134 |
+
"<|extratoken_90|>": 50346,
|
| 135 |
+
"<|extratoken_91|>": 50347,
|
| 136 |
+
"<|extratoken_92|>": 50348,
|
| 137 |
+
"<|extratoken_93|>": 50349,
|
| 138 |
+
"<|extratoken_94|>": 50350,
|
| 139 |
+
"<|extratoken_95|>": 50351,
|
| 140 |
+
"<|extratoken_96|>": 50352,
|
| 141 |
+
"<|extratoken_97|>": 50353,
|
| 142 |
+
"<|extratoken_98|>": 50354,
|
| 143 |
+
"<|extratoken_99|>": 50355,
|
| 144 |
+
"<|extratoken_9|>": 50265
|
| 145 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_function": "gelu_new",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"GPTJMoEForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attn_pdrop": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_gptj_moe.GPTJMoEConfig",
|
| 9 |
+
"AutoModel": "modeling_gptj_moe.GPTJMoEModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_gptj_moe.GPTJMoEForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 50256,
|
| 13 |
+
"embd_pdrop": 0.0,
|
| 14 |
+
"eos_token_id": 50256,
|
| 15 |
+
"gradient_checkpointing": false,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"layer_norm_epsilon": 1e-05,
|
| 18 |
+
"model_type": "gptj_moe",
|
| 19 |
+
"n_embd": 4096,
|
| 20 |
+
"n_head": 16,
|
| 21 |
+
"n_inner": null,
|
| 22 |
+
"n_layer": 28,
|
| 23 |
+
"n_positions": 2048,
|
| 24 |
+
"num_experts_per_tok": 2,
|
| 25 |
+
"num_local_experts": 4,
|
| 26 |
+
"output_router_logits": false,
|
| 27 |
+
"resid_pdrop": 0.0,
|
| 28 |
+
"rotary_dim": 64,
|
| 29 |
+
"router_aux_loss_coef": 0.001,
|
| 30 |
+
"router_jitter_noise": 0.0,
|
| 31 |
+
"scale_attn_weights": true,
|
| 32 |
+
"summary_activation": null,
|
| 33 |
+
"summary_first_dropout": 0.1,
|
| 34 |
+
"summary_proj_to_labels": true,
|
| 35 |
+
"summary_type": "cls_index",
|
| 36 |
+
"summary_use_proj": true,
|
| 37 |
+
"task_specific_params": {
|
| 38 |
+
"text-generation": {
|
| 39 |
+
"do_sample": true,
|
| 40 |
+
"max_length": 50,
|
| 41 |
+
"temperature": 1.0
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"tie_word_embeddings": false,
|
| 45 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 46 |
+
"torch_dtype": "bfloat16",
|
| 47 |
+
"transformers_version": "4.40.0.dev0",
|
| 48 |
+
"use_cache": true,
|
| 49 |
+
"vocab_size": 50400
|
| 50 |
+
}
|
configuration_gptj_moe.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
class GPTJMoEConfig(PretrainedConfig):
|
| 7 |
+
r"""
|
| 8 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
| 9 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 10 |
+
defaults will yield a similar configuration to that of the GPT-J
|
| 11 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
| 12 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
| 13 |
+
for more information.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
| 17 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
| 18 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
| 19 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
| 20 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 21 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 22 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
| 23 |
+
Dimensionality of the embeddings and hidden states.
|
| 24 |
+
n_layer (`int`, *optional*, defaults to 28):
|
| 25 |
+
Number of hidden layers in the Transformer encoder.
|
| 26 |
+
n_head (`int`, *optional*, defaults to 16):
|
| 27 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 28 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
| 29 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
| 30 |
+
n_inner (`int`, *optional*, defaults to None):
|
| 31 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
| 32 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
| 33 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
| 34 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
| 35 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 36 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
| 37 |
+
The dropout ratio for the embeddings.
|
| 38 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
| 39 |
+
The dropout ratio for the attention.
|
| 40 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 41 |
+
The epsilon to use in the layer normalization layers.
|
| 42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 44 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 45 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 46 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
| 47 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
| 48 |
+
parameter
|
| 49 |
+
num_local_experts (`int`, *optional*, defaults to 4):
|
| 50 |
+
Number of experts per Sparse MLP layer.
|
| 51 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
| 52 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
| 53 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
| 54 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
| 55 |
+
The aux loss factor for the total loss.
|
| 56 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
| 57 |
+
Amount of noise to add to the router.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
model_type = "gptj_moe"
|
| 61 |
+
attribute_map = {
|
| 62 |
+
"max_position_embeddings": "n_positions",
|
| 63 |
+
"hidden_size": "n_embd",
|
| 64 |
+
"num_attention_heads": "n_head",
|
| 65 |
+
"num_hidden_layers": "n_layer",
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def __init__(
|
| 69 |
+
self,
|
| 70 |
+
vocab_size=50400,
|
| 71 |
+
n_positions=2048,
|
| 72 |
+
n_embd=4096,
|
| 73 |
+
n_layer=28,
|
| 74 |
+
n_head=16,
|
| 75 |
+
rotary_dim=64,
|
| 76 |
+
n_inner=None,
|
| 77 |
+
activation_function="gelu_new",
|
| 78 |
+
resid_pdrop=0.0,
|
| 79 |
+
embd_pdrop=0.0,
|
| 80 |
+
attn_pdrop=0.0,
|
| 81 |
+
layer_norm_epsilon=1e-5,
|
| 82 |
+
initializer_range=0.02,
|
| 83 |
+
use_cache=True,
|
| 84 |
+
bos_token_id=50256,
|
| 85 |
+
eos_token_id=50256,
|
| 86 |
+
tie_word_embeddings=False,
|
| 87 |
+
n_experts_per_tok=2,
|
| 88 |
+
n_local_experts=4,
|
| 89 |
+
output_router_logits=False,
|
| 90 |
+
router_aux_loss_coef=0.001,
|
| 91 |
+
router_jitter_noise=0.0,
|
| 92 |
+
**kwargs,
|
| 93 |
+
):
|
| 94 |
+
self.vocab_size = vocab_size
|
| 95 |
+
self.n_positions = n_positions
|
| 96 |
+
self.n_embd = n_embd
|
| 97 |
+
self.n_layer = n_layer
|
| 98 |
+
self.n_head = n_head
|
| 99 |
+
self.n_inner = n_inner
|
| 100 |
+
self.rotary_dim = rotary_dim
|
| 101 |
+
self.activation_function = activation_function
|
| 102 |
+
self.resid_pdrop = resid_pdrop
|
| 103 |
+
self.embd_pdrop = embd_pdrop
|
| 104 |
+
self.attn_pdrop = attn_pdrop
|
| 105 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 106 |
+
self.initializer_range = initializer_range
|
| 107 |
+
self.use_cache = use_cache
|
| 108 |
+
|
| 109 |
+
self.bos_token_id = bos_token_id
|
| 110 |
+
self.eos_token_id = eos_token_id
|
| 111 |
+
|
| 112 |
+
self.num_experts_per_tok = n_experts_per_tok
|
| 113 |
+
self.num_local_experts = n_local_experts
|
| 114 |
+
self.output_router_logits = output_router_logits
|
| 115 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 116 |
+
self.router_jitter_noise = router_jitter_noise
|
| 117 |
+
|
| 118 |
+
super().__init__(
|
| 119 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
| 120 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 50256,
|
| 4 |
+
"eos_token_id": 50256,
|
| 5 |
+
"transformers_version": "4.40.0.dev0"
|
| 6 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56b567fa4fb5ba701d0a89e3e21f61bf450adaa93baeee7877cf918723e31086
|
| 3 |
+
size 4977101656
|
model-00002-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9af7ef4e8ce64473087fbf84f72524a16907ecde61330362cafe2c9aa1232e0
|
| 3 |
+
size 4966952456
|
model-00003-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:505a7867107466c875521fa16f6cafec577f36ebf9c99313ca293531b26fafcd
|
| 3 |
+
size 4966944520
|
model-00004-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:827cb5b4972c4b3b1b26b6da5b8e5edaf1a9b55939bff202002b017bf0bc5beb
|
| 3 |
+
size 4966952864
|
model-00005-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dea322e2cf83970e37a13679157d50a8effe44b2a5ab742dbd5ab0b27c87d281
|
| 3 |
+
size 4966952552
|
model-00006-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db980fdb921b826014a3704fa9516b5a77857b64640216a97492b895b3ff975d
|
| 3 |
+
size 4966927976
|
model-00007-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45af2b4065d5a8d0058e6a59729774dea7fa54b3c25e585a0889e90205a990ac
|
| 3 |
+
size 4842951552
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 34654702016
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.bias": "model-00007-of-00007.safetensors",
|
| 7 |
+
"lm_head.weight": "model-00007-of-00007.safetensors",
|
| 8 |
+
"transformer.h.0.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 9 |
+
"transformer.h.0.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
| 10 |
+
"transformer.h.0.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 11 |
+
"transformer.h.0.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 12 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 13 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 14 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 15 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 16 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 17 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 18 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 19 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 20 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 21 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 22 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 23 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 24 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 25 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 26 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 27 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 28 |
+
"transformer.h.0.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
| 29 |
+
"transformer.h.0.ln_1.bias": "model-00001-of-00007.safetensors",
|
| 30 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 31 |
+
"transformer.h.1.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 32 |
+
"transformer.h.1.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
| 33 |
+
"transformer.h.1.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 34 |
+
"transformer.h.1.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 35 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 36 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 37 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 38 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 39 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 40 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 41 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 42 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 43 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 44 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 45 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 46 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 47 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 48 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 49 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 50 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 51 |
+
"transformer.h.1.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
| 52 |
+
"transformer.h.1.ln_1.bias": "model-00001-of-00007.safetensors",
|
| 53 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 54 |
+
"transformer.h.10.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 55 |
+
"transformer.h.10.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
| 56 |
+
"transformer.h.10.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 57 |
+
"transformer.h.10.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 58 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 59 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 60 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 61 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 62 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 63 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 64 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 65 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 66 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 67 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 68 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 69 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 70 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 71 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 72 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 73 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 74 |
+
"transformer.h.10.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
| 75 |
+
"transformer.h.10.ln_1.bias": "model-00003-of-00007.safetensors",
|
| 76 |
+
"transformer.h.10.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 77 |
+
"transformer.h.11.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 78 |
+
"transformer.h.11.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
| 79 |
+
"transformer.h.11.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 80 |
+
"transformer.h.11.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 81 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 82 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 83 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 84 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 85 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 86 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 87 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 88 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 89 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 90 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 91 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 92 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 93 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 94 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 95 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 96 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 97 |
+
"transformer.h.11.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
| 98 |
+
"transformer.h.11.ln_1.bias": "model-00003-of-00007.safetensors",
|
| 99 |
+
"transformer.h.11.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 100 |
+
"transformer.h.12.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 101 |
+
"transformer.h.12.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
| 102 |
+
"transformer.h.12.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 103 |
+
"transformer.h.12.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 104 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 105 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 106 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 107 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 108 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 109 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 110 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 111 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 112 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 113 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 114 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 115 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 116 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 117 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 118 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 119 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 120 |
+
"transformer.h.12.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
| 121 |
+
"transformer.h.12.ln_1.bias": "model-00003-of-00007.safetensors",
|
| 122 |
+
"transformer.h.12.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 123 |
+
"transformer.h.13.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 124 |
+
"transformer.h.13.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
| 125 |
+
"transformer.h.13.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 126 |
+
"transformer.h.13.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 127 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 128 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 129 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 130 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 131 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 132 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 133 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 134 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 135 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 136 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 137 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 138 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 139 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 140 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 141 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 142 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 143 |
+
"transformer.h.13.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
| 144 |
+
"transformer.h.13.ln_1.bias": "model-00004-of-00007.safetensors",
|
| 145 |
+
"transformer.h.13.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 146 |
+
"transformer.h.14.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 147 |
+
"transformer.h.14.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
| 148 |
+
"transformer.h.14.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 149 |
+
"transformer.h.14.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 150 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 151 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 152 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 153 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 154 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 155 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 156 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 157 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 158 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 159 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 160 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 161 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 162 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 163 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 164 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 165 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 166 |
+
"transformer.h.14.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
| 167 |
+
"transformer.h.14.ln_1.bias": "model-00004-of-00007.safetensors",
|
| 168 |
+
"transformer.h.14.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 169 |
+
"transformer.h.15.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 170 |
+
"transformer.h.15.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
| 171 |
+
"transformer.h.15.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 172 |
+
"transformer.h.15.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 173 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 174 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 175 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 176 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 177 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 178 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 179 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 180 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 181 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 182 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 183 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 184 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 185 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
| 186 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
| 187 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
| 188 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
| 189 |
+
"transformer.h.15.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
| 190 |
+
"transformer.h.15.ln_1.bias": "model-00004-of-00007.safetensors",
|
| 191 |
+
"transformer.h.15.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 192 |
+
"transformer.h.16.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
| 193 |
+
"transformer.h.16.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
| 194 |
+
"transformer.h.16.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
| 195 |
+
"transformer.h.16.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
| 196 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 197 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 198 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 199 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 200 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 201 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 202 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 203 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 204 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 205 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 206 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 207 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 208 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 209 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 210 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 211 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 212 |
+
"transformer.h.16.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
| 213 |
+
"transformer.h.16.ln_1.bias": "model-00004-of-00007.safetensors",
|
| 214 |
+
"transformer.h.16.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 215 |
+
"transformer.h.17.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 216 |
+
"transformer.h.17.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
| 217 |
+
"transformer.h.17.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 218 |
+
"transformer.h.17.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 219 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 220 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 221 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 222 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 223 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 224 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 225 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 226 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 227 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 228 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 229 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 230 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 231 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 232 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 233 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 234 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 235 |
+
"transformer.h.17.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
| 236 |
+
"transformer.h.17.ln_1.bias": "model-00005-of-00007.safetensors",
|
| 237 |
+
"transformer.h.17.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 238 |
+
"transformer.h.18.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 239 |
+
"transformer.h.18.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
| 240 |
+
"transformer.h.18.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 241 |
+
"transformer.h.18.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 242 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 243 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 244 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 245 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 246 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 247 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 248 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 249 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 250 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 251 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 252 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 253 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 254 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 255 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 256 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 257 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 258 |
+
"transformer.h.18.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
| 259 |
+
"transformer.h.18.ln_1.bias": "model-00005-of-00007.safetensors",
|
| 260 |
+
"transformer.h.18.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 261 |
+
"transformer.h.19.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 262 |
+
"transformer.h.19.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
| 263 |
+
"transformer.h.19.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 264 |
+
"transformer.h.19.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 265 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 266 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 267 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 268 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 269 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 270 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 271 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 272 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 273 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 274 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 275 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 276 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 277 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 278 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 279 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
| 280 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
| 281 |
+
"transformer.h.19.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
| 282 |
+
"transformer.h.19.ln_1.bias": "model-00005-of-00007.safetensors",
|
| 283 |
+
"transformer.h.19.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 284 |
+
"transformer.h.2.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 285 |
+
"transformer.h.2.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
| 286 |
+
"transformer.h.2.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 287 |
+
"transformer.h.2.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 288 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 289 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 290 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 291 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 292 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 293 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 294 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 295 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 296 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 297 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 298 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 299 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 300 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 301 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 302 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 303 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 304 |
+
"transformer.h.2.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
| 305 |
+
"transformer.h.2.ln_1.bias": "model-00001-of-00007.safetensors",
|
| 306 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 307 |
+
"transformer.h.20.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
| 308 |
+
"transformer.h.20.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
| 309 |
+
"transformer.h.20.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
| 310 |
+
"transformer.h.20.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
| 311 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
| 312 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
| 313 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 314 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 315 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 316 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 317 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 318 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 319 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 320 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 321 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 322 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 323 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 324 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 325 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 326 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 327 |
+
"transformer.h.20.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
| 328 |
+
"transformer.h.20.ln_1.bias": "model-00005-of-00007.safetensors",
|
| 329 |
+
"transformer.h.20.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 330 |
+
"transformer.h.21.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 331 |
+
"transformer.h.21.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
| 332 |
+
"transformer.h.21.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 333 |
+
"transformer.h.21.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 334 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 335 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 336 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 337 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 338 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 339 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 340 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 341 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 342 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 343 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 344 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 345 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 346 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 347 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 348 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 349 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 350 |
+
"transformer.h.21.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
| 351 |
+
"transformer.h.21.ln_1.bias": "model-00006-of-00007.safetensors",
|
| 352 |
+
"transformer.h.21.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 353 |
+
"transformer.h.22.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 354 |
+
"transformer.h.22.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
| 355 |
+
"transformer.h.22.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 356 |
+
"transformer.h.22.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 357 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 358 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 359 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 360 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 361 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 362 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 363 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 364 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 365 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 366 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 367 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 368 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 369 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 370 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 371 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 372 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 373 |
+
"transformer.h.22.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
| 374 |
+
"transformer.h.22.ln_1.bias": "model-00006-of-00007.safetensors",
|
| 375 |
+
"transformer.h.22.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 376 |
+
"transformer.h.23.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 377 |
+
"transformer.h.23.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
| 378 |
+
"transformer.h.23.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 379 |
+
"transformer.h.23.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 380 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 381 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 382 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 383 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 384 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 385 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 386 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 387 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 388 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 389 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 390 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 391 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 392 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 393 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 394 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 395 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 396 |
+
"transformer.h.23.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
| 397 |
+
"transformer.h.23.ln_1.bias": "model-00006-of-00007.safetensors",
|
| 398 |
+
"transformer.h.23.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 399 |
+
"transformer.h.24.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
| 400 |
+
"transformer.h.24.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
| 401 |
+
"transformer.h.24.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
| 402 |
+
"transformer.h.24.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
| 403 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
| 404 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
| 405 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
| 406 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
| 407 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 408 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 409 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 410 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 411 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 412 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 413 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 414 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 415 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 416 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 417 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 418 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 419 |
+
"transformer.h.24.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
| 420 |
+
"transformer.h.24.ln_1.bias": "model-00006-of-00007.safetensors",
|
| 421 |
+
"transformer.h.24.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 422 |
+
"transformer.h.25.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
| 423 |
+
"transformer.h.25.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
| 424 |
+
"transformer.h.25.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
| 425 |
+
"transformer.h.25.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
| 426 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 427 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 428 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 429 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 430 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 431 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 432 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 433 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 434 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 435 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 436 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 437 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 438 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 439 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 440 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 441 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 442 |
+
"transformer.h.25.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
| 443 |
+
"transformer.h.25.ln_1.bias": "model-00007-of-00007.safetensors",
|
| 444 |
+
"transformer.h.25.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 445 |
+
"transformer.h.26.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
| 446 |
+
"transformer.h.26.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
| 447 |
+
"transformer.h.26.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
| 448 |
+
"transformer.h.26.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
| 449 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 450 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 451 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 452 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 453 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 454 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 455 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 456 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 457 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 458 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 459 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 460 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 461 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 462 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 463 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 464 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 465 |
+
"transformer.h.26.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
| 466 |
+
"transformer.h.26.ln_1.bias": "model-00007-of-00007.safetensors",
|
| 467 |
+
"transformer.h.26.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 468 |
+
"transformer.h.27.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
| 469 |
+
"transformer.h.27.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
| 470 |
+
"transformer.h.27.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
| 471 |
+
"transformer.h.27.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
| 472 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 473 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 474 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 475 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 476 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 477 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 478 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 479 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 480 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 481 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 482 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 483 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 484 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
| 485 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
| 486 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
| 487 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
| 488 |
+
"transformer.h.27.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
| 489 |
+
"transformer.h.27.ln_1.bias": "model-00007-of-00007.safetensors",
|
| 490 |
+
"transformer.h.27.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 491 |
+
"transformer.h.3.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
| 492 |
+
"transformer.h.3.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
| 493 |
+
"transformer.h.3.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
| 494 |
+
"transformer.h.3.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
| 495 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 496 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 497 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 498 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 499 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 500 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 501 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 502 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 503 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
| 504 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
| 505 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
| 506 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
| 507 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 508 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 509 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 510 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 511 |
+
"transformer.h.3.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
| 512 |
+
"transformer.h.3.ln_1.bias": "model-00001-of-00007.safetensors",
|
| 513 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 514 |
+
"transformer.h.4.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 515 |
+
"transformer.h.4.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
| 516 |
+
"transformer.h.4.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 517 |
+
"transformer.h.4.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 518 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 519 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 520 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 521 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 522 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 523 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 524 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 525 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 526 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 527 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 528 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 529 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 530 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 531 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 532 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 533 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 534 |
+
"transformer.h.4.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
| 535 |
+
"transformer.h.4.ln_1.bias": "model-00002-of-00007.safetensors",
|
| 536 |
+
"transformer.h.4.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 537 |
+
"transformer.h.5.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 538 |
+
"transformer.h.5.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
| 539 |
+
"transformer.h.5.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 540 |
+
"transformer.h.5.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 541 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 542 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 543 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 544 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 545 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 546 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 547 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 548 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 549 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 550 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 551 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 552 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 553 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 554 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 555 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 556 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 557 |
+
"transformer.h.5.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
| 558 |
+
"transformer.h.5.ln_1.bias": "model-00002-of-00007.safetensors",
|
| 559 |
+
"transformer.h.5.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 560 |
+
"transformer.h.6.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 561 |
+
"transformer.h.6.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
| 562 |
+
"transformer.h.6.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 563 |
+
"transformer.h.6.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 564 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 565 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 566 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 567 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 568 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 569 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 570 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 571 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 572 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 573 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 574 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 575 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 576 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 577 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 578 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 579 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 580 |
+
"transformer.h.6.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
| 581 |
+
"transformer.h.6.ln_1.bias": "model-00002-of-00007.safetensors",
|
| 582 |
+
"transformer.h.6.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 583 |
+
"transformer.h.7.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
| 584 |
+
"transformer.h.7.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
| 585 |
+
"transformer.h.7.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
| 586 |
+
"transformer.h.7.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
| 587 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 588 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 589 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 590 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 591 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 592 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 593 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 594 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 595 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 596 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 597 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
| 598 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
| 599 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
| 600 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
| 601 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 602 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 603 |
+
"transformer.h.7.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
| 604 |
+
"transformer.h.7.ln_1.bias": "model-00002-of-00007.safetensors",
|
| 605 |
+
"transformer.h.7.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 606 |
+
"transformer.h.8.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 607 |
+
"transformer.h.8.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
| 608 |
+
"transformer.h.8.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 609 |
+
"transformer.h.8.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 610 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 611 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 612 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 613 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 614 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 615 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 616 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 617 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 618 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 619 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 620 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 621 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 622 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 623 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 624 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 625 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 626 |
+
"transformer.h.8.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
| 627 |
+
"transformer.h.8.ln_1.bias": "model-00003-of-00007.safetensors",
|
| 628 |
+
"transformer.h.8.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 629 |
+
"transformer.h.9.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
| 630 |
+
"transformer.h.9.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
| 631 |
+
"transformer.h.9.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
| 632 |
+
"transformer.h.9.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
| 633 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 634 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 635 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 636 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 637 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 638 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 639 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 640 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 641 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 642 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 643 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 644 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 645 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
| 646 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
| 647 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
| 648 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
| 649 |
+
"transformer.h.9.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
| 650 |
+
"transformer.h.9.ln_1.bias": "model-00003-of-00007.safetensors",
|
| 651 |
+
"transformer.h.9.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 652 |
+
"transformer.ln_f.bias": "model-00007-of-00007.safetensors",
|
| 653 |
+
"transformer.ln_f.weight": "model-00007-of-00007.safetensors",
|
| 654 |
+
"transformer.wte.weight": "model-00001-of-00007.safetensors"
|
| 655 |
+
}
|
| 656 |
+
}
|
modeling_gptj_moe.py
ADDED
|
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" GPT-J model with MoE. """
|
| 2 |
+
|
| 3 |
+
import warnings
|
| 4 |
+
from typing import Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
MoeCausalLMOutputWithPast,
|
| 13 |
+
MoeModelOutputWithPast
|
| 14 |
+
)
|
| 15 |
+
from transformers.models.gptj.modeling_gptj import (
|
| 16 |
+
GPTJ_ATTENTION_CLASSES,
|
| 17 |
+
GPTJMLP,
|
| 18 |
+
GPTJPreTrainedModel
|
| 19 |
+
)
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 22 |
+
|
| 23 |
+
from .configuration_gptj_moe import GPTJMoEConfig
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
| 28 |
+
def load_balancing_loss_func(
|
| 29 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
| 30 |
+
) -> float:
|
| 31 |
+
r"""
|
| 32 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 33 |
+
|
| 34 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
| 35 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 36 |
+
experts is too unbalanced.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
| 40 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
| 41 |
+
shape [batch_size X sequence_length, num_experts].
|
| 42 |
+
attention_mask (`torch.Tensor`, None):
|
| 43 |
+
The attention_mask used in forward function
|
| 44 |
+
shape [batch_size X sequence_length] if not None.
|
| 45 |
+
num_experts (`int`, *optional*):
|
| 46 |
+
Number of experts
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
The auxiliary loss.
|
| 50 |
+
"""
|
| 51 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
| 52 |
+
return 0
|
| 53 |
+
|
| 54 |
+
if isinstance(gate_logits, tuple):
|
| 55 |
+
compute_device = gate_logits[0].device
|
| 56 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
| 57 |
+
|
| 58 |
+
routing_weights = F.softmax(concatenated_gate_logits, dim=-1)
|
| 59 |
+
|
| 60 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
| 61 |
+
|
| 62 |
+
expert_mask = F.one_hot(selected_experts, num_experts)
|
| 63 |
+
|
| 64 |
+
if attention_mask is None:
|
| 65 |
+
# Compute the percentage of tokens routed to each experts
|
| 66 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
| 67 |
+
|
| 68 |
+
# Compute the average probability of routing to these experts
|
| 69 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
| 70 |
+
else:
|
| 71 |
+
batch_size, sequence_length = attention_mask.shape
|
| 72 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
| 73 |
+
|
| 74 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
| 75 |
+
expert_attention_mask = (
|
| 76 |
+
attention_mask[None, :, :, None, None]
|
| 77 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
| 78 |
+
.reshape(-1, top_k, num_experts)
|
| 79 |
+
.to(compute_device)
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Compute the percentage of tokens routed to each experts
|
| 83 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
| 84 |
+
expert_attention_mask, dim=0
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
| 88 |
+
router_per_expert_attention_mask = (
|
| 89 |
+
attention_mask[None, :, :, None]
|
| 90 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
| 91 |
+
.reshape(-1, num_experts)
|
| 92 |
+
.to(compute_device)
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Compute the average probability of routing to these experts
|
| 96 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
| 97 |
+
router_per_expert_attention_mask, dim=0
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
| 101 |
+
return overall_loss * num_experts
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock
|
| 104 |
+
class GPTJSparseMoE(nn.Module):
|
| 105 |
+
"""
|
| 106 |
+
This implementation is
|
| 107 |
+
strictly equivalent to standard MoE with full capacity (no
|
| 108 |
+
dropped tokens). It's faster since it formulates MoE operations
|
| 109 |
+
in terms of block-sparse operations to accomodate imbalanced
|
| 110 |
+
assignments of tokens to experts, whereas standard MoE either
|
| 111 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
| 112 |
+
capacity factor to number of experts and thus waste computation
|
| 113 |
+
and memory on padding.
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
def __init__(self, config):
|
| 117 |
+
super().__init__()
|
| 118 |
+
self.hidden_dim = config.n_embd
|
| 119 |
+
self.ffn_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
| 120 |
+
self.num_experts = config.num_local_experts
|
| 121 |
+
self.top_k = config.num_experts_per_tok
|
| 122 |
+
|
| 123 |
+
# gating
|
| 124 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
| 125 |
+
|
| 126 |
+
self.experts = nn.ModuleList([GPTJMLP(self.ffn_dim, config) for _ in range(self.num_experts)])
|
| 127 |
+
|
| 128 |
+
# Jitter parameters
|
| 129 |
+
self.jitter_noise = config.router_jitter_noise
|
| 130 |
+
|
| 131 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 132 |
+
""" """
|
| 133 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 134 |
+
if self.training and self.jitter_noise > 0:
|
| 135 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
| 136 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 137 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 138 |
+
router_logits = self.gate(hidden_states)
|
| 139 |
+
|
| 140 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 141 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 142 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 143 |
+
# we cast back to the input dtype
|
| 144 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 145 |
+
|
| 146 |
+
final_hidden_states = torch.zeros(
|
| 147 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# One hot encode the selected experts to create an expert mask
|
| 151 |
+
# this will be used to easily index which expert is going to be sollicitated
|
| 152 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 153 |
+
|
| 154 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
| 155 |
+
for expert_idx in range(self.num_experts):
|
| 156 |
+
expert_layer = self.experts[expert_idx]
|
| 157 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 158 |
+
|
| 159 |
+
if top_x.shape[0] == 0:
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
# Index the correct hidden states and compute the expert hidden state for
|
| 163 |
+
# the current expert. We need to make sure to multiply the output hidden
|
| 164 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
| 165 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
| 166 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
| 167 |
+
|
| 168 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
| 169 |
+
# the `top_x` tensor here.
|
| 170 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 171 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
| 172 |
+
return final_hidden_states, router_logits
|
| 173 |
+
|
| 174 |
+
class GPTJMoEBlock(nn.Module):
|
| 175 |
+
def __init__(self, config):
|
| 176 |
+
super().__init__()
|
| 177 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 178 |
+
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
|
| 179 |
+
self.block_sparse_moe = GPTJSparseMoE(config)
|
| 180 |
+
|
| 181 |
+
def forward(
|
| 182 |
+
self,
|
| 183 |
+
hidden_states: Optional[torch.FloatTensor],
|
| 184 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 185 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 186 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 187 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 188 |
+
use_cache: Optional[bool] = False,
|
| 189 |
+
output_attentions: Optional[bool] = False,
|
| 190 |
+
output_router_logits: Optional[bool] = False,
|
| 191 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
| 192 |
+
residual = hidden_states
|
| 193 |
+
hidden_states = self.ln_1(hidden_states)
|
| 194 |
+
attn_outputs = self.attn(
|
| 195 |
+
hidden_states=hidden_states,
|
| 196 |
+
layer_past=layer_past,
|
| 197 |
+
attention_mask=attention_mask,
|
| 198 |
+
position_ids=position_ids,
|
| 199 |
+
head_mask=head_mask,
|
| 200 |
+
use_cache=use_cache,
|
| 201 |
+
output_attentions=output_attentions,
|
| 202 |
+
)
|
| 203 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 204 |
+
outputs = attn_outputs[1:]
|
| 205 |
+
|
| 206 |
+
feed_forward_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
| 207 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
| 208 |
+
|
| 209 |
+
if use_cache:
|
| 210 |
+
outputs = (hidden_states,) + outputs
|
| 211 |
+
else:
|
| 212 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 213 |
+
|
| 214 |
+
if output_router_logits:
|
| 215 |
+
outputs = outputs + (router_logits,)
|
| 216 |
+
|
| 217 |
+
return outputs # hidden_states, present, (attentions), (router_logits)
|
| 218 |
+
|
| 219 |
+
class GPTJMoEModel(GPTJPreTrainedModel):
|
| 220 |
+
def __init__(self, config):
|
| 221 |
+
super().__init__(config)
|
| 222 |
+
|
| 223 |
+
self.embed_dim = config.n_embd
|
| 224 |
+
self.vocab_size = config.vocab_size
|
| 225 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 226 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 227 |
+
self.h = nn.ModuleList([GPTJMoEBlock(config) for _ in range(config.n_layer)])
|
| 228 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 229 |
+
|
| 230 |
+
# Model parallel
|
| 231 |
+
self.model_parallel = False
|
| 232 |
+
self.device_map = None
|
| 233 |
+
self.gradient_checkpointing = False
|
| 234 |
+
|
| 235 |
+
# Initialize weights and apply final processing
|
| 236 |
+
self.post_init()
|
| 237 |
+
|
| 238 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 239 |
+
|
| 240 |
+
def parallelize(self, device_map=None):
|
| 241 |
+
warnings.warn(
|
| 242 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
| 243 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 244 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
| 245 |
+
" ...}",
|
| 246 |
+
FutureWarning,
|
| 247 |
+
)
|
| 248 |
+
# Check validity of device_map
|
| 249 |
+
self.device_map = (
|
| 250 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
| 251 |
+
)
|
| 252 |
+
assert_device_map(self.device_map, len(self.h))
|
| 253 |
+
self.model_parallel = True
|
| 254 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
| 255 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 256 |
+
self.wte = self.wte.to(self.first_device)
|
| 257 |
+
# Load onto devices
|
| 258 |
+
for k, v in self.device_map.items():
|
| 259 |
+
for block in v:
|
| 260 |
+
cuda_device = "cuda:" + str(k)
|
| 261 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 262 |
+
# ln_f to last
|
| 263 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 264 |
+
|
| 265 |
+
def deparallelize(self):
|
| 266 |
+
warnings.warn(
|
| 267 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 268 |
+
FutureWarning,
|
| 269 |
+
)
|
| 270 |
+
self.model_parallel = False
|
| 271 |
+
self.device_map = None
|
| 272 |
+
self.first_device = "cpu"
|
| 273 |
+
self.last_device = "cpu"
|
| 274 |
+
self.wte = self.wte.to("cpu")
|
| 275 |
+
for index in range(len(self.h)):
|
| 276 |
+
self.h[index] = self.h[index].to("cpu")
|
| 277 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 278 |
+
torch.cuda.empty_cache()
|
| 279 |
+
|
| 280 |
+
def get_input_embeddings(self):
|
| 281 |
+
return self.wte
|
| 282 |
+
|
| 283 |
+
def set_input_embeddings(self, new_embeddings):
|
| 284 |
+
self.wte = new_embeddings
|
| 285 |
+
|
| 286 |
+
def forward(
|
| 287 |
+
self,
|
| 288 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 289 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 290 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 291 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 292 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 293 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 294 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 295 |
+
use_cache: Optional[bool] = None,
|
| 296 |
+
output_attentions: Optional[bool] = None,
|
| 297 |
+
output_hidden_states: Optional[bool] = None,
|
| 298 |
+
output_router_logits: Optional[bool] = None,
|
| 299 |
+
return_dict: Optional[bool] = None,
|
| 300 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 301 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 302 |
+
output_router_logits = (
|
| 303 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 304 |
+
)
|
| 305 |
+
output_hidden_states = (
|
| 306 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 307 |
+
)
|
| 308 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 310 |
+
|
| 311 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 312 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 313 |
+
elif input_ids is not None:
|
| 314 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 315 |
+
input_shape = input_ids.size()
|
| 316 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 317 |
+
batch_size = input_ids.shape[0]
|
| 318 |
+
elif inputs_embeds is not None:
|
| 319 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 320 |
+
batch_size = inputs_embeds.shape[0]
|
| 321 |
+
else:
|
| 322 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 323 |
+
|
| 324 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 325 |
+
|
| 326 |
+
if token_type_ids is not None:
|
| 327 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 328 |
+
|
| 329 |
+
if past_key_values is None:
|
| 330 |
+
past_length = 0
|
| 331 |
+
past_key_values = tuple([None] * len(self.h))
|
| 332 |
+
else:
|
| 333 |
+
past_length = past_key_values[0][0].size(-2)
|
| 334 |
+
|
| 335 |
+
if position_ids is None:
|
| 336 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 337 |
+
position_ids = position_ids.unsqueeze(0)
|
| 338 |
+
|
| 339 |
+
if not self._use_flash_attention_2:
|
| 340 |
+
# Attention mask.
|
| 341 |
+
if attention_mask is not None:
|
| 342 |
+
if batch_size <= 0:
|
| 343 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 344 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 345 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 346 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 347 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 348 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 349 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 350 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 351 |
+
|
| 352 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 353 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 354 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 355 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 356 |
+
# effectively the same as removing these entirely.
|
| 357 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 358 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 359 |
+
|
| 360 |
+
# Prepare head mask if needed
|
| 361 |
+
# 1.0 in head_mask indicate we keep the head
|
| 362 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
| 363 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
| 364 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 365 |
+
|
| 366 |
+
if inputs_embeds is None:
|
| 367 |
+
inputs_embeds = self.wte(input_ids)
|
| 368 |
+
|
| 369 |
+
hidden_states = inputs_embeds
|
| 370 |
+
|
| 371 |
+
if token_type_ids is not None:
|
| 372 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 373 |
+
hidden_states = hidden_states + token_type_embeds
|
| 374 |
+
|
| 375 |
+
hidden_states = self.drop(hidden_states)
|
| 376 |
+
|
| 377 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 378 |
+
|
| 379 |
+
if self.gradient_checkpointing and self.training:
|
| 380 |
+
if use_cache:
|
| 381 |
+
logger.warning_once(
|
| 382 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 383 |
+
)
|
| 384 |
+
use_cache = False
|
| 385 |
+
|
| 386 |
+
presents = () if use_cache else None
|
| 387 |
+
all_self_attentions = () if output_attentions else None
|
| 388 |
+
all_hidden_states = () if output_hidden_states else None
|
| 389 |
+
all_router_logits = () if output_router_logits else None
|
| 390 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 391 |
+
# Model parallel
|
| 392 |
+
if self.model_parallel:
|
| 393 |
+
torch.cuda.set_device(hidden_states.device)
|
| 394 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 395 |
+
if layer_past is not None:
|
| 396 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
| 397 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 398 |
+
if attention_mask is not None:
|
| 399 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 400 |
+
if isinstance(head_mask, torch.Tensor):
|
| 401 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 402 |
+
if output_hidden_states:
|
| 403 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 404 |
+
|
| 405 |
+
if self.gradient_checkpointing and self.training:
|
| 406 |
+
outputs = self._gradient_checkpointing_func(
|
| 407 |
+
block.__call__,
|
| 408 |
+
hidden_states,
|
| 409 |
+
None,
|
| 410 |
+
attention_mask,
|
| 411 |
+
position_ids,
|
| 412 |
+
head_mask[i],
|
| 413 |
+
use_cache,
|
| 414 |
+
output_attentions,
|
| 415 |
+
output_router_logits,
|
| 416 |
+
)
|
| 417 |
+
else:
|
| 418 |
+
outputs = block(
|
| 419 |
+
hidden_states=hidden_states,
|
| 420 |
+
layer_past=layer_past,
|
| 421 |
+
attention_mask=attention_mask,
|
| 422 |
+
position_ids=position_ids,
|
| 423 |
+
head_mask=head_mask[i],
|
| 424 |
+
use_cache=use_cache,
|
| 425 |
+
output_attentions=output_attentions,
|
| 426 |
+
output_router_logits=output_router_logits,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
hidden_states = outputs[0]
|
| 430 |
+
if use_cache is True:
|
| 431 |
+
presents = presents + (outputs[1],)
|
| 432 |
+
|
| 433 |
+
if output_attentions:
|
| 434 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 435 |
+
|
| 436 |
+
if output_router_logits:
|
| 437 |
+
all_router_logits = all_router_logits + (outputs[-1],)
|
| 438 |
+
|
| 439 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 440 |
+
if self.model_parallel:
|
| 441 |
+
for k, v in self.device_map.items():
|
| 442 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 443 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 444 |
+
|
| 445 |
+
hidden_states = self.ln_f(hidden_states)
|
| 446 |
+
|
| 447 |
+
hidden_states = hidden_states.view(output_shape)
|
| 448 |
+
# Add last hidden state
|
| 449 |
+
if output_hidden_states:
|
| 450 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 451 |
+
|
| 452 |
+
# Add router logits
|
| 453 |
+
if output_router_logits:
|
| 454 |
+
all_router_logits += (outputs[-1],)
|
| 455 |
+
|
| 456 |
+
if not return_dict:
|
| 457 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 458 |
+
|
| 459 |
+
return MoeModelOutputWithPast(
|
| 460 |
+
last_hidden_state=hidden_states,
|
| 461 |
+
past_key_values=presents,
|
| 462 |
+
hidden_states=all_hidden_states,
|
| 463 |
+
attentions=all_self_attentions,
|
| 464 |
+
router_logits=all_router_logits,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
class GPTJMoEForCausalLM(GPTJPreTrainedModel):
|
| 468 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 469 |
+
|
| 470 |
+
def __init__(self, config):
|
| 471 |
+
super().__init__(config)
|
| 472 |
+
self.transformer = GPTJMoEModel(config)
|
| 473 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
| 474 |
+
|
| 475 |
+
# Model parallel
|
| 476 |
+
self.model_parallel = False
|
| 477 |
+
self.device_map = None
|
| 478 |
+
|
| 479 |
+
# MoE
|
| 480 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 481 |
+
self.num_experts = config.num_local_experts
|
| 482 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 483 |
+
|
| 484 |
+
# Initialize weights and apply final processing
|
| 485 |
+
self.post_init()
|
| 486 |
+
|
| 487 |
+
def parallelize(self, device_map=None):
|
| 488 |
+
warnings.warn(
|
| 489 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
| 490 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 491 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
| 492 |
+
" 0, 'transformer.h.1': 1, ...}",
|
| 493 |
+
FutureWarning,
|
| 494 |
+
)
|
| 495 |
+
self.device_map = (
|
| 496 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 497 |
+
if device_map is None
|
| 498 |
+
else device_map
|
| 499 |
+
)
|
| 500 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 501 |
+
self.transformer.parallelize(self.device_map)
|
| 502 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 503 |
+
self.model_parallel = True
|
| 504 |
+
|
| 505 |
+
def deparallelize(self):
|
| 506 |
+
warnings.warn(
|
| 507 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 508 |
+
FutureWarning,
|
| 509 |
+
)
|
| 510 |
+
self.transformer.deparallelize()
|
| 511 |
+
self.transformer = self.transformer.to("cpu")
|
| 512 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 513 |
+
self.model_parallel = False
|
| 514 |
+
torch.cuda.empty_cache()
|
| 515 |
+
|
| 516 |
+
def get_output_embeddings(self):
|
| 517 |
+
return self.lm_head
|
| 518 |
+
|
| 519 |
+
def set_output_embeddings(self, new_embeddings):
|
| 520 |
+
self.lm_head = new_embeddings
|
| 521 |
+
|
| 522 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, output_router_logits=False, **kwargs):
|
| 523 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 524 |
+
# Omit tokens covered by past_key_values
|
| 525 |
+
if past_key_values:
|
| 526 |
+
past_length = past_key_values[0][0].shape[2]
|
| 527 |
+
|
| 528 |
+
# Some generation methods already pass only the last input ID
|
| 529 |
+
if input_ids.shape[1] > past_length:
|
| 530 |
+
remove_prefix_length = past_length
|
| 531 |
+
else:
|
| 532 |
+
# Default to old behavior: keep only final ID
|
| 533 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 534 |
+
|
| 535 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 536 |
+
if token_type_ids is not None:
|
| 537 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
| 538 |
+
|
| 539 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 540 |
+
position_ids = kwargs.get("position_ids", None)
|
| 541 |
+
|
| 542 |
+
if attention_mask is not None and position_ids is None:
|
| 543 |
+
# create position_ids on the fly for batch generation
|
| 544 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 545 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 546 |
+
if past_key_values:
|
| 547 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 548 |
+
|
| 549 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 550 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 551 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 552 |
+
else:
|
| 553 |
+
model_inputs = {"input_ids": input_ids}
|
| 554 |
+
|
| 555 |
+
model_inputs.update(
|
| 556 |
+
{
|
| 557 |
+
"past_key_values": past_key_values,
|
| 558 |
+
"use_cache": kwargs.get("use_cache"),
|
| 559 |
+
"position_ids": position_ids,
|
| 560 |
+
"attention_mask": attention_mask,
|
| 561 |
+
"token_type_ids": token_type_ids,
|
| 562 |
+
"output_router_logits": output_router_logits,
|
| 563 |
+
}
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
return model_inputs
|
| 567 |
+
|
| 568 |
+
def forward(
|
| 569 |
+
self,
|
| 570 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 571 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 572 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 573 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 574 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 575 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 576 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 577 |
+
labels: Optional[torch.LongTensor] = None,
|
| 578 |
+
use_cache: Optional[bool] = None,
|
| 579 |
+
output_attentions: Optional[bool] = None,
|
| 580 |
+
output_hidden_states: Optional[bool] = None,
|
| 581 |
+
output_router_logits: Optional[bool] = None,
|
| 582 |
+
return_dict: Optional[bool] = None,
|
| 583 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 584 |
+
r"""
|
| 585 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 586 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 587 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 588 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 589 |
+
"""
|
| 590 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 591 |
+
|
| 592 |
+
transformer_outputs = self.transformer(
|
| 593 |
+
input_ids,
|
| 594 |
+
past_key_values=past_key_values,
|
| 595 |
+
attention_mask=attention_mask,
|
| 596 |
+
token_type_ids=token_type_ids,
|
| 597 |
+
position_ids=position_ids,
|
| 598 |
+
head_mask=head_mask,
|
| 599 |
+
inputs_embeds=inputs_embeds,
|
| 600 |
+
use_cache=use_cache,
|
| 601 |
+
output_attentions=output_attentions,
|
| 602 |
+
output_hidden_states=output_hidden_states,
|
| 603 |
+
output_router_logits=output_router_logits,
|
| 604 |
+
return_dict=return_dict,
|
| 605 |
+
)
|
| 606 |
+
hidden_states = transformer_outputs[0]
|
| 607 |
+
|
| 608 |
+
# Set device for model parallelism
|
| 609 |
+
if self.model_parallel:
|
| 610 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 611 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 612 |
+
|
| 613 |
+
# make sure sampling in fp16 works correctly and
|
| 614 |
+
# compute loss in fp32 to match with mesh-tf version
|
| 615 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
| 616 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
| 617 |
+
|
| 618 |
+
loss = None
|
| 619 |
+
if labels is not None:
|
| 620 |
+
# move labels to correct device to enable model parallelism
|
| 621 |
+
labels = labels.to(lm_logits.device)
|
| 622 |
+
# Shift so that tokens < n predict n
|
| 623 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 624 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 625 |
+
# Flatten the tokens
|
| 626 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 627 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 628 |
+
|
| 629 |
+
loss = loss.to(hidden_states.dtype)
|
| 630 |
+
|
| 631 |
+
# MoE loss
|
| 632 |
+
aux_loss = None
|
| 633 |
+
if output_router_logits:
|
| 634 |
+
aux_loss = load_balancing_loss_func(
|
| 635 |
+
transformer_outputs.router_logits if return_dict else transformer_outputs[-1],
|
| 636 |
+
self.num_experts,
|
| 637 |
+
self.num_experts_per_tok,
|
| 638 |
+
attention_mask,
|
| 639 |
+
)
|
| 640 |
+
if labels is not None:
|
| 641 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
| 642 |
+
|
| 643 |
+
if not return_dict:
|
| 644 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 645 |
+
if output_router_logits:
|
| 646 |
+
output = (aux_loss,) + output
|
| 647 |
+
return ((loss,) + output) if loss is not None else output
|
| 648 |
+
|
| 649 |
+
return MoeCausalLMOutputWithPast(
|
| 650 |
+
loss=loss,
|
| 651 |
+
aux_loss=aux_loss,
|
| 652 |
+
logits=lm_logits,
|
| 653 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 654 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 655 |
+
attentions=transformer_outputs.attentions,
|
| 656 |
+
router_logits=transformer_outputs.router_logits
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
@staticmethod
|
| 660 |
+
def _reorder_cache(
|
| 661 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 662 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 663 |
+
"""
|
| 664 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
| 665 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 666 |
+
beam_idx at every generation step.
|
| 667 |
+
"""
|
| 668 |
+
return tuple(
|
| 669 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 670 |
+
for layer_past in past_key_values
|
| 671 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,1166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"50256": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"50257": {
|
| 14 |
+
"content": "<|extratoken_1|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": true,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": false
|
| 20 |
+
},
|
| 21 |
+
"50258": {
|
| 22 |
+
"content": "<|extratoken_2|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": true,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": false
|
| 28 |
+
},
|
| 29 |
+
"50259": {
|
| 30 |
+
"content": "<|extratoken_3|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": true,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": false
|
| 36 |
+
},
|
| 37 |
+
"50260": {
|
| 38 |
+
"content": "<|extratoken_4|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"50261": {
|
| 46 |
+
"content": "<|extratoken_5|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": true,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"50262": {
|
| 54 |
+
"content": "<|extratoken_6|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": true,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"50263": {
|
| 62 |
+
"content": "<|extratoken_7|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": true,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"50264": {
|
| 70 |
+
"content": "<|extratoken_8|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": true,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"50265": {
|
| 78 |
+
"content": "<|extratoken_9|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": true,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"50266": {
|
| 86 |
+
"content": "<|extratoken_10|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": true,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"50267": {
|
| 94 |
+
"content": "<|extratoken_11|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": true,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"50268": {
|
| 102 |
+
"content": "<|extratoken_12|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": true,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"50269": {
|
| 110 |
+
"content": "<|extratoken_13|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": true,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"50270": {
|
| 118 |
+
"content": "<|extratoken_14|>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": true,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"50271": {
|
| 126 |
+
"content": "<|extratoken_15|>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": true,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"50272": {
|
| 134 |
+
"content": "<|extratoken_16|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": true,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"50273": {
|
| 142 |
+
"content": "<|extratoken_17|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": true,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"50274": {
|
| 150 |
+
"content": "<|extratoken_18|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": true,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"50275": {
|
| 158 |
+
"content": "<|extratoken_19|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": true,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"50276": {
|
| 166 |
+
"content": "<|extratoken_20|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": true,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"50277": {
|
| 174 |
+
"content": "<|extratoken_21|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": true,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"50278": {
|
| 182 |
+
"content": "<|extratoken_22|>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": true,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"50279": {
|
| 190 |
+
"content": "<|extratoken_23|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": true,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"50280": {
|
| 198 |
+
"content": "<|extratoken_24|>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": true,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"50281": {
|
| 206 |
+
"content": "<|extratoken_25|>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": true,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"50282": {
|
| 214 |
+
"content": "<|extratoken_26|>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": true,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"50283": {
|
| 222 |
+
"content": "<|extratoken_27|>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": true,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"50284": {
|
| 230 |
+
"content": "<|extratoken_28|>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": true,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"50285": {
|
| 238 |
+
"content": "<|extratoken_29|>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": true,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"50286": {
|
| 246 |
+
"content": "<|extratoken_30|>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": true,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"50287": {
|
| 254 |
+
"content": "<|extratoken_31|>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": true,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"50288": {
|
| 262 |
+
"content": "<|extratoken_32|>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": true,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"50289": {
|
| 270 |
+
"content": "<|extratoken_33|>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": true,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"50290": {
|
| 278 |
+
"content": "<|extratoken_34|>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": true,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"50291": {
|
| 286 |
+
"content": "<|extratoken_35|>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": true,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"50292": {
|
| 294 |
+
"content": "<|extratoken_36|>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": true,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"50293": {
|
| 302 |
+
"content": "<|extratoken_37|>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": true,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"50294": {
|
| 310 |
+
"content": "<|extratoken_38|>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": true,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"50295": {
|
| 318 |
+
"content": "<|extratoken_39|>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": true,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"50296": {
|
| 326 |
+
"content": "<|extratoken_40|>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": true,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"50297": {
|
| 334 |
+
"content": "<|extratoken_41|>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": true,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"50298": {
|
| 342 |
+
"content": "<|extratoken_42|>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": true,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"50299": {
|
| 350 |
+
"content": "<|extratoken_43|>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": true,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"50300": {
|
| 358 |
+
"content": "<|extratoken_44|>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": true,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"50301": {
|
| 366 |
+
"content": "<|extratoken_45|>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": true,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"50302": {
|
| 374 |
+
"content": "<|extratoken_46|>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": true,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"50303": {
|
| 382 |
+
"content": "<|extratoken_47|>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": true,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"50304": {
|
| 390 |
+
"content": "<|extratoken_48|>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": true,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"50305": {
|
| 398 |
+
"content": "<|extratoken_49|>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": true,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50306": {
|
| 406 |
+
"content": "<|extratoken_50|>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": true,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"50307": {
|
| 414 |
+
"content": "<|extratoken_51|>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": true,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"50308": {
|
| 422 |
+
"content": "<|extratoken_52|>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": true,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"50309": {
|
| 430 |
+
"content": "<|extratoken_53|>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": true,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"50310": {
|
| 438 |
+
"content": "<|extratoken_54|>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": true,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"50311": {
|
| 446 |
+
"content": "<|extratoken_55|>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": true,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"50312": {
|
| 454 |
+
"content": "<|extratoken_56|>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": true,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"50313": {
|
| 462 |
+
"content": "<|extratoken_57|>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": true,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"50314": {
|
| 470 |
+
"content": "<|extratoken_58|>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": true,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"50315": {
|
| 478 |
+
"content": "<|extratoken_59|>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": true,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"50316": {
|
| 486 |
+
"content": "<|extratoken_60|>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": true,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"50317": {
|
| 494 |
+
"content": "<|extratoken_61|>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": true,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"50318": {
|
| 502 |
+
"content": "<|extratoken_62|>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": true,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"50319": {
|
| 510 |
+
"content": "<|extratoken_63|>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": true,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"50320": {
|
| 518 |
+
"content": "<|extratoken_64|>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": true,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"50321": {
|
| 526 |
+
"content": "<|extratoken_65|>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": true,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"50322": {
|
| 534 |
+
"content": "<|extratoken_66|>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": true,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"50323": {
|
| 542 |
+
"content": "<|extratoken_67|>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": true,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"50324": {
|
| 550 |
+
"content": "<|extratoken_68|>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": true,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"50325": {
|
| 558 |
+
"content": "<|extratoken_69|>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": true,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"50326": {
|
| 566 |
+
"content": "<|extratoken_70|>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": true,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"50327": {
|
| 574 |
+
"content": "<|extratoken_71|>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": true,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"50328": {
|
| 582 |
+
"content": "<|extratoken_72|>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": true,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"50329": {
|
| 590 |
+
"content": "<|extratoken_73|>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": true,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"50330": {
|
| 598 |
+
"content": "<|extratoken_74|>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": true,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"50331": {
|
| 606 |
+
"content": "<|extratoken_75|>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": true,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"50332": {
|
| 614 |
+
"content": "<|extratoken_76|>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": true,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"50333": {
|
| 622 |
+
"content": "<|extratoken_77|>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": true,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"50334": {
|
| 630 |
+
"content": "<|extratoken_78|>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": true,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"50335": {
|
| 638 |
+
"content": "<|extratoken_79|>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": true,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"50336": {
|
| 646 |
+
"content": "<|extratoken_80|>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": true,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"50337": {
|
| 654 |
+
"content": "<|extratoken_81|>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": true,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"50338": {
|
| 662 |
+
"content": "<|extratoken_82|>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": true,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"50339": {
|
| 670 |
+
"content": "<|extratoken_83|>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": true,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"50340": {
|
| 678 |
+
"content": "<|extratoken_84|>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": true,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"50341": {
|
| 686 |
+
"content": "<|extratoken_85|>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": true,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"50342": {
|
| 694 |
+
"content": "<|extratoken_86|>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": true,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"50343": {
|
| 702 |
+
"content": "<|extratoken_87|>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": true,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"50344": {
|
| 710 |
+
"content": "<|extratoken_88|>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": true,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"50345": {
|
| 718 |
+
"content": "<|extratoken_89|>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": true,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"50346": {
|
| 726 |
+
"content": "<|extratoken_90|>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": true,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"50347": {
|
| 734 |
+
"content": "<|extratoken_91|>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": true,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"50348": {
|
| 742 |
+
"content": "<|extratoken_92|>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": true,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"50349": {
|
| 750 |
+
"content": "<|extratoken_93|>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": true,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"50350": {
|
| 758 |
+
"content": "<|extratoken_94|>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": true,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"50351": {
|
| 766 |
+
"content": "<|extratoken_95|>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": true,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"50352": {
|
| 774 |
+
"content": "<|extratoken_96|>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": true,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"50353": {
|
| 782 |
+
"content": "<|extratoken_97|>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": true,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"50354": {
|
| 790 |
+
"content": "<|extratoken_98|>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": true,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"50355": {
|
| 798 |
+
"content": "<|extratoken_99|>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": true,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"50356": {
|
| 806 |
+
"content": "<|extratoken_100|>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": true,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"50357": {
|
| 814 |
+
"content": "<|extratoken_101|>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": true,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"50358": {
|
| 822 |
+
"content": "<|extratoken_102|>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": true,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"50359": {
|
| 830 |
+
"content": "<|extratoken_103|>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": true,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"50360": {
|
| 838 |
+
"content": "<|extratoken_104|>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": true,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"50361": {
|
| 846 |
+
"content": "<|extratoken_105|>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": true,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"50362": {
|
| 854 |
+
"content": "<|extratoken_106|>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": true,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": false
|
| 860 |
+
},
|
| 861 |
+
"50363": {
|
| 862 |
+
"content": "<|extratoken_107|>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": true,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": false
|
| 868 |
+
},
|
| 869 |
+
"50364": {
|
| 870 |
+
"content": "<|extratoken_108|>",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": true,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"50365": {
|
| 878 |
+
"content": "<|extratoken_109|>",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": true,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"50366": {
|
| 886 |
+
"content": "<|extratoken_110|>",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": true,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"50367": {
|
| 894 |
+
"content": "<|extratoken_111|>",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": true,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"50368": {
|
| 902 |
+
"content": "<|extratoken_112|>",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": true,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"50369": {
|
| 910 |
+
"content": "<|extratoken_113|>",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": true,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"50370": {
|
| 918 |
+
"content": "<|extratoken_114|>",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": true,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"50371": {
|
| 926 |
+
"content": "<|extratoken_115|>",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": true,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"50372": {
|
| 934 |
+
"content": "<|extratoken_116|>",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": true,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"50373": {
|
| 942 |
+
"content": "<|extratoken_117|>",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": true,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"50374": {
|
| 950 |
+
"content": "<|extratoken_118|>",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": true,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"50375": {
|
| 958 |
+
"content": "<|extratoken_119|>",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": true,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"50376": {
|
| 966 |
+
"content": "<|extratoken_120|>",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": true,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"50377": {
|
| 974 |
+
"content": "<|extratoken_121|>",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": true,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"50378": {
|
| 982 |
+
"content": "<|extratoken_122|>",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": true,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"50379": {
|
| 990 |
+
"content": "<|extratoken_123|>",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": true,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"50380": {
|
| 998 |
+
"content": "<|extratoken_124|>",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": true,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"50381": {
|
| 1006 |
+
"content": "<|extratoken_125|>",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": true,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"50382": {
|
| 1014 |
+
"content": "<|extratoken_126|>",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": true,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"50383": {
|
| 1022 |
+
"content": "<|extratoken_127|>",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": true,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"50384": {
|
| 1030 |
+
"content": "<|extratoken_128|>",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": true,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"50385": {
|
| 1038 |
+
"content": "<|extratoken_129|>",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": true,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"50386": {
|
| 1046 |
+
"content": "<|extratoken_130|>",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": true,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"50387": {
|
| 1054 |
+
"content": "<|extratoken_131|>",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": true,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"50388": {
|
| 1062 |
+
"content": "<|extratoken_132|>",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": true,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"50389": {
|
| 1070 |
+
"content": "<|extratoken_133|>",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": true,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"50390": {
|
| 1078 |
+
"content": "<|extratoken_134|>",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": true,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"50391": {
|
| 1086 |
+
"content": "<|extratoken_135|>",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": true,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"50392": {
|
| 1094 |
+
"content": "<|extratoken_136|>",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": true,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"50393": {
|
| 1102 |
+
"content": "<|extratoken_137|>",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": true,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"50394": {
|
| 1110 |
+
"content": "<|extratoken_138|>",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": true,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"50395": {
|
| 1118 |
+
"content": "<|extratoken_139|>",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": true,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"50396": {
|
| 1126 |
+
"content": "<|extratoken_140|>",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": true,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"50397": {
|
| 1134 |
+
"content": "<|extratoken_141|>",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": true,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"50398": {
|
| 1142 |
+
"content": "<|extratoken_142|>",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": true,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"50399": {
|
| 1150 |
+
"content": "<|extratoken_143|>",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": true,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
}
|
| 1157 |
+
},
|
| 1158 |
+
"bos_token": "<|endoftext|>",
|
| 1159 |
+
"clean_up_tokenization_spaces": true,
|
| 1160 |
+
"eos_token": "<|endoftext|>",
|
| 1161 |
+
"errors": "replace",
|
| 1162 |
+
"model_max_length": 2048,
|
| 1163 |
+
"pad_token": null,
|
| 1164 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 1165 |
+
"unk_token": "<|endoftext|>"
|
| 1166 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|