File size: 8,972 Bytes
472e2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Backend Code Generation Model - Setup & Usage Guide

## πŸ› οΈ Installation & Setup

### 1. Install Dependencies
```bash
pip install torch transformers datasets pandas numpy aiohttp requests
pip install accelerate  # For faster training
```

### 2. Set Environment Variables
```bash
# Optional: GitHub token for collecting real repositories
export GITHUB_TOKEN="your_github_token_here"

# For GPU training (if available)
export CUDA_VISIBLE_DEVICES=0
```

### 3. Directory Structure
```
backend-ai-trainer/
β”œβ”€β”€ training_pipeline.py          # Main pipeline code
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ raw_dataset.json         # Collected training data
β”‚   └── processed/               # Preprocessed data
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ backend_code_model/      # Trained model output
β”‚   └── checkpoints/             # Training checkpoints
└── evaluation/
    β”œβ”€β”€ test_cases.json          # Test scenarios
    └── results/                 # Evaluation results
```

## πŸƒβ€β™‚οΈ Quick Start

### Option A: Full Automated Pipeline
```python
import asyncio
from training_pipeline import TrainingPipeline

config = {
    'base_model': 'microsoft/DialoGPT-medium',
    'output_dir': './models/backend_code_model',
    'github_token': 'your_token_here',  # Optional
}

pipeline = TrainingPipeline(config)
asyncio.run(pipeline.run_full_pipeline())
```

### Option B: Step-by-Step Execution

#### Step 1: Collect Training Data
```python
from training_pipeline import DataCollector
import asyncio

collector = DataCollector()

# Collect from GitHub (requires token)
github_queries = [
    'express api backend',
    'fastapi python backend', 
    'django rest api',
    'nodejs backend server',
    'flask api backend'
]

asyncio.run(collector.collect_github_repositories(github_queries, max_repos=100))

# Generate synthetic examples
collector.generate_synthetic_examples(count=500)

# Save dataset
collector.save_dataset('training_data.json')
```

#### Step 2: Preprocess Data
```python
from training_pipeline import DataPreprocessor

preprocessor = DataPreprocessor()
processed_examples = preprocessor.preprocess_examples(collector.collected_examples)
training_dataset = preprocessor.create_training_dataset(processed_examples)

print(f"Created dataset with {len(training_dataset)} examples")
```

#### Step 3: Train Model
```python
from training_pipeline import CodeGenerationModel

model = CodeGenerationModel('microsoft/DialoGPT-medium')
model.fine_tune(training_dataset, output_dir='./trained_model')
```

#### Step 4: Generate Code
```python
# Generate a complete backend application
generated_code = model.generate_code(
    description="E-commerce API with user authentication and product management",
    framework="fastapi",
    language="python"
)

print("Generated Backend Application:")
print("=" * 50)
print(generated_code)
```

## 🎯 Training Configuration Options

### Model Selection
```python
# Lightweight for testing
config['base_model'] = 'microsoft/DialoGPT-small'

# Balanced performance
config['base_model'] = 'microsoft/DialoGPT-medium'

# High quality (requires more resources)  
config['base_model'] = 'microsoft/DialoGPT-large'
```

### Training Parameters
```python
training_config = {
    'num_epochs': 5,           # More epochs = better learning
    'batch_size': 4,           # Adjust based on GPU memory
    'learning_rate': 5e-5,     # Conservative learning rate
    'max_length': 2048,        # Maximum token length
    'warmup_steps': 500,       # Learning rate warmup
    'save_steps': 1000,        # Checkpoint frequency
}
```

### Framework Coverage
The pipeline supports these backend frameworks:

**Node.js Frameworks:**
- Express.js - Most popular Node.js framework
- NestJS - Enterprise-grade framework  
- Koa.js - Lightweight alternative

**Python Frameworks:**
- FastAPI - Modern, high-performance API framework
- Django - Full-featured web framework
- Flask - Lightweight and flexible

**Go Frameworks:**
- Gin - HTTP web framework
- Fiber - Express-inspired framework

## πŸ“Š Evaluation & Testing

### Automatic Quality Assessment
```python
from training_pipeline import ModelEvaluator

evaluator = ModelEvaluator()

# Test specific code generation
generated_code = model.generate_code(
    description="User authentication API with JWT tokens",
    framework="express", 
    language="javascript"
)

# Get quality scores
quality_scores = evaluator.evaluate_code_quality(generated_code, "javascript")
print(f"Syntax Correctness: {quality_scores['syntax_correctness']:.2f}")
print(f"Completeness: {quality_scores['completeness']:.2f}")
print(f"Best Practices: {quality_scores['best_practices']:.2f}")
```

### Comprehensive Benchmarking
```python
test_cases = [
    {
        'description': 'REST API for task management with user authentication',
        'framework': 'express',
        'language': 'javascript'
    },
    {
        'description': 'GraphQL API for social media platform',
        'framework': 'fastapi',
        'language': 'python'
    },
    {
        'description': 'Microservice for payment processing',
        'framework': 'gin',
        'language': 'go'
    }
]

benchmark_results = evaluator.benchmark_model(model, test_cases)
print("Overall Performance:", benchmark_results)
```

## πŸš€ Advanced Usage

### Custom Data Sources
```python
# Add your own training examples
custom_examples = [
    {
        'description': 'Custom API requirement',
        'requirements': ['Custom feature 1', 'Custom feature 2'],
        'framework': 'fastapi',
        'language': 'python',
        'code_files': {
            'main.py': '# Your custom code here',
            'requirements.txt': 'fastapi\nuvicorn'
        }
    }
]

# Add to training data
collector.collected_examples.extend([CodeExample(**ex) for ex in custom_examples])
```

### Fine-tuning on Specific Domains
```python
# Focus training on specific application types
domain_specific_queries = [
    'microservices architecture',
    'api gateway implementation', 
    'database orm integration',
    'authentication middleware',
    'rate limiting api'
]

asyncio.run(collector.collect_github_repositories(domain_specific_queries))
```

### Export Trained Model
```python
# Save model for deployment
model.model.save_pretrained('./production_model')
model.tokenizer.save_pretrained('./production_model')

# Load for inference
from transformers import AutoModelForCausalLM, AutoTokenizer

production_model = AutoModelForCausalLM.from_pretrained('./production_model')
production_tokenizer = AutoTokenizer.from_pretrained('./production_model')
```

## πŸ”§ Troubleshooting

### Common Issues

**1. Out of Memory Errors**
```python
# Reduce batch size
config['per_device_train_batch_size'] = 1
config['gradient_accumulation_steps'] = 4

# Use gradient checkpointing
config['gradient_checkpointing'] = True
```

**2. Slow Training**
```python
# Enable mixed precision (if GPU supports it)
config['fp16'] = True

# Use multiple GPUs
config['dataloader_num_workers'] = 4
```

**3. Poor Code Quality**
```python
# Increase training data diversity
collector.generate_synthetic_examples(count=1000)

# Extend training duration
config['num_train_epochs'] = 10
```

### Performance Optimization

**For CPU Training:**
```python
config['dataloader_pin_memory'] = False
config['per_device_train_batch_size'] = 1
```

**For GPU Training:**
```python
config['fp16'] = True
config['dataloader_pin_memory'] = True
config['per_device_train_batch_size'] = 4
```

## πŸ“ˆ Expected Results

After training on ~500-1000 examples, you should expect:

- **Syntax Correctness**: 85-95%
- **Code Completeness**: 80-90% 
- **Best Practices**: 70-85%
- **Framework Coverage**: All major Node.js and Python frameworks
- **Generation Speed**: 2-5 seconds per application

## πŸ”„ Continuous Improvement

### Regular Retraining
```python
# Schedule weekly data collection
import schedule

def update_training_data():
    asyncio.run(collector.collect_github_repositories(['new backend trends']))
    
schedule.every().week.do(update_training_data)
```

### A/B Testing Different Models
```python
models_to_compare = [
    'microsoft/DialoGPT-medium',
    'microsoft/DialoGPT-large', 
    'gpt2-medium'
]

for base_model in models_to_compare:
    model = CodeGenerationModel(base_model)
    results = evaluator.benchmark_model(model, test_cases)
    print(f"{base_model}: {results}")
```

## 🎯 Next Steps

1. **Start Small**: Begin with synthetic data and 100-200 examples
2. **Add Real Data**: Integrate GitHub repositories gradually
3. **Evaluate Regularly**: Monitor quality metrics after each training session
4. **Expand Frameworks**: Add support for new frameworks as needed
5. **Production Deploy**: Export model for API deployment

This pipeline provides a complete foundation for building your own backend code generation AI. The modular design allows you to customize and extend each component based on your specific needs.