File size: 8,972 Bytes
472e2e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Backend Code Generation Model - Setup & Usage Guide
## π οΈ Installation & Setup
### 1. Install Dependencies
```bash
pip install torch transformers datasets pandas numpy aiohttp requests
pip install accelerate # For faster training
```
### 2. Set Environment Variables
```bash
# Optional: GitHub token for collecting real repositories
export GITHUB_TOKEN="your_github_token_here"
# For GPU training (if available)
export CUDA_VISIBLE_DEVICES=0
```
### 3. Directory Structure
```
backend-ai-trainer/
βββ training_pipeline.py # Main pipeline code
βββ data/
β βββ raw_dataset.json # Collected training data
β βββ processed/ # Preprocessed data
βββ models/
β βββ backend_code_model/ # Trained model output
β βββ checkpoints/ # Training checkpoints
βββ evaluation/
βββ test_cases.json # Test scenarios
βββ results/ # Evaluation results
```
## πββοΈ Quick Start
### Option A: Full Automated Pipeline
```python
import asyncio
from training_pipeline import TrainingPipeline
config = {
'base_model': 'microsoft/DialoGPT-medium',
'output_dir': './models/backend_code_model',
'github_token': 'your_token_here', # Optional
}
pipeline = TrainingPipeline(config)
asyncio.run(pipeline.run_full_pipeline())
```
### Option B: Step-by-Step Execution
#### Step 1: Collect Training Data
```python
from training_pipeline import DataCollector
import asyncio
collector = DataCollector()
# Collect from GitHub (requires token)
github_queries = [
'express api backend',
'fastapi python backend',
'django rest api',
'nodejs backend server',
'flask api backend'
]
asyncio.run(collector.collect_github_repositories(github_queries, max_repos=100))
# Generate synthetic examples
collector.generate_synthetic_examples(count=500)
# Save dataset
collector.save_dataset('training_data.json')
```
#### Step 2: Preprocess Data
```python
from training_pipeline import DataPreprocessor
preprocessor = DataPreprocessor()
processed_examples = preprocessor.preprocess_examples(collector.collected_examples)
training_dataset = preprocessor.create_training_dataset(processed_examples)
print(f"Created dataset with {len(training_dataset)} examples")
```
#### Step 3: Train Model
```python
from training_pipeline import CodeGenerationModel
model = CodeGenerationModel('microsoft/DialoGPT-medium')
model.fine_tune(training_dataset, output_dir='./trained_model')
```
#### Step 4: Generate Code
```python
# Generate a complete backend application
generated_code = model.generate_code(
description="E-commerce API with user authentication and product management",
framework="fastapi",
language="python"
)
print("Generated Backend Application:")
print("=" * 50)
print(generated_code)
```
## π― Training Configuration Options
### Model Selection
```python
# Lightweight for testing
config['base_model'] = 'microsoft/DialoGPT-small'
# Balanced performance
config['base_model'] = 'microsoft/DialoGPT-medium'
# High quality (requires more resources)
config['base_model'] = 'microsoft/DialoGPT-large'
```
### Training Parameters
```python
training_config = {
'num_epochs': 5, # More epochs = better learning
'batch_size': 4, # Adjust based on GPU memory
'learning_rate': 5e-5, # Conservative learning rate
'max_length': 2048, # Maximum token length
'warmup_steps': 500, # Learning rate warmup
'save_steps': 1000, # Checkpoint frequency
}
```
### Framework Coverage
The pipeline supports these backend frameworks:
**Node.js Frameworks:**
- Express.js - Most popular Node.js framework
- NestJS - Enterprise-grade framework
- Koa.js - Lightweight alternative
**Python Frameworks:**
- FastAPI - Modern, high-performance API framework
- Django - Full-featured web framework
- Flask - Lightweight and flexible
**Go Frameworks:**
- Gin - HTTP web framework
- Fiber - Express-inspired framework
## π Evaluation & Testing
### Automatic Quality Assessment
```python
from training_pipeline import ModelEvaluator
evaluator = ModelEvaluator()
# Test specific code generation
generated_code = model.generate_code(
description="User authentication API with JWT tokens",
framework="express",
language="javascript"
)
# Get quality scores
quality_scores = evaluator.evaluate_code_quality(generated_code, "javascript")
print(f"Syntax Correctness: {quality_scores['syntax_correctness']:.2f}")
print(f"Completeness: {quality_scores['completeness']:.2f}")
print(f"Best Practices: {quality_scores['best_practices']:.2f}")
```
### Comprehensive Benchmarking
```python
test_cases = [
{
'description': 'REST API for task management with user authentication',
'framework': 'express',
'language': 'javascript'
},
{
'description': 'GraphQL API for social media platform',
'framework': 'fastapi',
'language': 'python'
},
{
'description': 'Microservice for payment processing',
'framework': 'gin',
'language': 'go'
}
]
benchmark_results = evaluator.benchmark_model(model, test_cases)
print("Overall Performance:", benchmark_results)
```
## π Advanced Usage
### Custom Data Sources
```python
# Add your own training examples
custom_examples = [
{
'description': 'Custom API requirement',
'requirements': ['Custom feature 1', 'Custom feature 2'],
'framework': 'fastapi',
'language': 'python',
'code_files': {
'main.py': '# Your custom code here',
'requirements.txt': 'fastapi\nuvicorn'
}
}
]
# Add to training data
collector.collected_examples.extend([CodeExample(**ex) for ex in custom_examples])
```
### Fine-tuning on Specific Domains
```python
# Focus training on specific application types
domain_specific_queries = [
'microservices architecture',
'api gateway implementation',
'database orm integration',
'authentication middleware',
'rate limiting api'
]
asyncio.run(collector.collect_github_repositories(domain_specific_queries))
```
### Export Trained Model
```python
# Save model for deployment
model.model.save_pretrained('./production_model')
model.tokenizer.save_pretrained('./production_model')
# Load for inference
from transformers import AutoModelForCausalLM, AutoTokenizer
production_model = AutoModelForCausalLM.from_pretrained('./production_model')
production_tokenizer = AutoTokenizer.from_pretrained('./production_model')
```
## π§ Troubleshooting
### Common Issues
**1. Out of Memory Errors**
```python
# Reduce batch size
config['per_device_train_batch_size'] = 1
config['gradient_accumulation_steps'] = 4
# Use gradient checkpointing
config['gradient_checkpointing'] = True
```
**2. Slow Training**
```python
# Enable mixed precision (if GPU supports it)
config['fp16'] = True
# Use multiple GPUs
config['dataloader_num_workers'] = 4
```
**3. Poor Code Quality**
```python
# Increase training data diversity
collector.generate_synthetic_examples(count=1000)
# Extend training duration
config['num_train_epochs'] = 10
```
### Performance Optimization
**For CPU Training:**
```python
config['dataloader_pin_memory'] = False
config['per_device_train_batch_size'] = 1
```
**For GPU Training:**
```python
config['fp16'] = True
config['dataloader_pin_memory'] = True
config['per_device_train_batch_size'] = 4
```
## π Expected Results
After training on ~500-1000 examples, you should expect:
- **Syntax Correctness**: 85-95%
- **Code Completeness**: 80-90%
- **Best Practices**: 70-85%
- **Framework Coverage**: All major Node.js and Python frameworks
- **Generation Speed**: 2-5 seconds per application
## π Continuous Improvement
### Regular Retraining
```python
# Schedule weekly data collection
import schedule
def update_training_data():
asyncio.run(collector.collect_github_repositories(['new backend trends']))
schedule.every().week.do(update_training_data)
```
### A/B Testing Different Models
```python
models_to_compare = [
'microsoft/DialoGPT-medium',
'microsoft/DialoGPT-large',
'gpt2-medium'
]
for base_model in models_to_compare:
model = CodeGenerationModel(base_model)
results = evaluator.benchmark_model(model, test_cases)
print(f"{base_model}: {results}")
```
## π― Next Steps
1. **Start Small**: Begin with synthetic data and 100-200 examples
2. **Add Real Data**: Integrate GitHub repositories gradually
3. **Evaluate Regularly**: Monitor quality metrics after each training session
4. **Expand Frameworks**: Add support for new frameworks as needed
5. **Production Deploy**: Export model for API deployment
This pipeline provides a complete foundation for building your own backend code generation AI. The modular design allows you to customize and extend each component based on your specific needs. |