File size: 28,697 Bytes
472e2e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
#!/usr/bin/env python3
"""
Backend Code Generation Model Training Pipeline
===============================================
A comprehensive training pipeline for building an AI model that generates
framework-agnostic backend code with full application scaffolding.
Features:
- Data collection from multiple sources
- Multi-framework support (Express.js, FastAPI, Django, Flask, etc.)
- Full application scaffolding generation
- Model training with transformer architecture
- Evaluation and benchmarking tools
"""
import os
import json
import logging
import asyncio
import aiohttp
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import (
AutoTokenizer, AutoModelForCausalLM, TrainingArguments,
Trainer, DataCollatorForLanguageModeling
)
from datasets import Dataset as HFDataset
import ast
import subprocess
import tempfile
from concurrent.futures import ThreadPoolExecutor
import requests
import time
import random
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class CodeExample:
"""Represents a single training example"""
description: str
requirements: List[str]
framework: str
language: str
code_files: Dict[str, str] # filename -> content
project_structure: Dict[str, Any]
metadata: Dict[str, Any]
class DataCollector:
"""Collects training data from various sources"""
def __init__(self):
self.github_token = os.getenv('GITHUB_TOKEN')
self.collected_examples: List[CodeExample] = []
async def collect_github_repositories(self, queries: List[str], max_repos: int = 100):
"""Collect backend projects from GitHub"""
logger.info("Starting GitHub repository collection...")
headers = {'Authorization': f'token {self.github_token}'} if self.github_token else {}
async with aiohttp.ClientSession(headers=headers) as session:
per_query = max(1, max_repos // max(1, len(queries)))
for query in queries:
await self._search_github_repos(session, query, per_query)
async def _search_github_repos(self, session: aiohttp.ClientSession, query: str, limit: int):
"""Search GitHub for repositories matching query"""
url = f"https://api.github.com/search/repositories"
params = {
'q': query,
'sort': 'stars',
'order': 'desc',
'per_page': min(limit, 100)
}
try:
async with session.get(url, params=params) as response:
if response.status == 200:
data = await response.json()
for repo in data.get('items', []):
await self._process_repository(session, repo)
else:
logger.warning(f"GitHub API request failed: {response.status}")
except Exception as e:
logger.error(f"Error searching GitHub: {e}")
async def _process_repository(self, session: aiohttp.ClientSession, repo: Dict):
"""Process a single repository to extract code examples"""
logger.info(f"Processing repository: {repo.get('full_name', '<unknown>')}")
try:
contents_url = f"https://api.github.com/repos/{repo['full_name']}/contents"
async with session.get(contents_url) as response:
if response.status == 200:
contents = await response.json()
await self._extract_code_example(session, repo, contents)
except Exception as e:
logger.error(f"Error processing repository {repo.get('full_name')}: {e}")
async def _extract_code_example(self, session: aiohttp.ClientSession, repo: Dict, contents: List[Dict]):
"""Extract a structured code example from repository"""
framework = self._identify_framework(contents, repo.get('description', ''))
language = self._identify_language(contents)
if not framework or not language:
return
code_files: Dict[str, str] = {}
for item in contents:
if item.get('type') == 'file' and self._is_important_file(item.get('name', '')):
try:
async with session.get(item['download_url']) as response:
if response.status == 200:
content = await response.text()
code_files[item['name']] = content
except Exception:
continue
if code_files:
example = CodeExample(
description=repo.get('description', ''),
requirements=self._extract_requirements(code_files),
framework=framework,
language=language,
code_files=code_files,
project_structure=self._analyze_structure(contents),
metadata={
'stars': repo.get('stargazers_count', 0),
'forks': repo.get('forks_count', 0),
'url': repo.get('html_url'),
'created_at': repo.get('created_at'),
'updated_at': repo.get('updated_at')
}
)
self.collected_examples.append(example)
def _identify_framework(self, contents: List[Dict], description: str) -> Optional[str]:
"""Identify the backend framework used"""
filenames = [item.get('name', '').lower() for item in contents if item.get('type') == 'file']
frameworks = {
'express': ['package.json', 'app.js', 'server.js'],
'fastapi': ['requirements.txt', 'main.py', 'app.py'],
'django': ['manage.py', 'settings.py', 'requirements.txt'],
'flask': ['app.py', 'requirements.txt'],
'nestjs': ['nest-cli.json', 'package.json'],
'koa': ['package.json'],
'gin': ['go.mod', 'main.go'],
'fiber': ['go.mod', 'main.go'],
}
for framework, required_files in frameworks.items():
if all(any(req in filename for filename in filenames) for req in required_files[:2]):
return framework
desc_lower = description.lower()
for framework in frameworks.keys():
if framework in desc_lower:
return framework
return None
def _identify_language(self, contents: List[Dict]) -> Optional[str]:
"""Identify primary programming language"""
extensions: Dict[str, int] = {}
for item in contents:
if item.get('type') == 'file':
ext = Path(item.get('name', '')).suffix.lower()
if ext:
extensions[ext] = extensions.get(ext, 0) + 1
lang_map = {
'.js': 'javascript',
'.ts': 'typescript',
'.py': 'python',
'.go': 'go',
'.java': 'java',
'.cs': 'csharp',
'.rb': 'ruby',
'.php': 'php'
}
if extensions:
most_common_ext = max(extensions.items(), key=lambda x: x[1])[0]
return lang_map.get(most_common_ext)
return None
def _is_important_file(self, filename: str) -> bool:
"""Check if file is important for training"""
important_patterns = [
'package.json', 'requirements.txt', 'go.mod', 'pom.xml',
'dockerfile', 'docker-compose.yml', 'readme.md',
'app.py', 'main.py', 'server.js', 'app.js', 'index.js',
'settings.py', 'config.py', 'routes.py', 'models.py',
'controller.js', 'service.js', 'middleware.js'
]
filename_lower = filename.lower()
return any(pattern in filename_lower for pattern in important_patterns)
def _extract_requirements(self, code_files: Dict[str, str]) -> List[str]:
"""Extract functional requirements from code"""
requirements: List[str] = []
if 'package.json' in code_files:
try:
pkg_data = json.loads(code_files['package.json'])
deps = list(pkg_data.get('dependencies', {}).keys())
requirements.extend([f"Uses {dep}" for dep in deps[:5]])
except Exception:
pass
if 'requirements.txt' in code_files:
lines = code_files['requirements.txt'].strip().split('\n')
deps = [line.split('==')[0].split('>=')[0].strip() for line in lines if line.strip()]
requirements.extend([f"Uses {dep}" for dep in deps[:5]])
for filename, content in code_files.items():
if filename.endswith(('.js', '.py')):
endpoints = self._extract_endpoints(content)
requirements.extend(endpoints)
return requirements[:10]
def _extract_endpoints(self, code_content: str) -> List[str]:
"""Extract API endpoints from code"""
endpoints: List[str] = []
lines = code_content.split('\n')
for line in lines:
s = line.strip()
if any(method in s for method in ['app.get(', 'app.post(', 'app.put(', 'app.delete(']):
endpoints.append(f"Implements {s}")
elif any(decorator in s for decorator in ['@app.get(', '@app.post(', '@app.put(', '@app.delete(']):
endpoints.append(f"Implements {s}")
elif 'def ' in s and any(word in s for word in ['get', 'post', 'put', 'delete']):
endpoints.append(f"Implements {s}")
return endpoints[:5]
def _analyze_structure(self, contents: List[Dict]) -> Dict[str, Any]:
"""Analyze project structure"""
structure: Dict[str, Any] = {
'files': [],
'directories': [],
'total_files': 0,
'has_tests': False,
'has_docs': False
}
for item in contents:
if item.get('type') == 'file':
name = item.get('name', '')
structure['files'].append(name)
structure['total_files'] += 1
if 'test' in name.lower():
structure['has_tests'] = True
if name.lower() in ['readme.md', 'docs.md']:
structure['has_docs'] = True
elif item.get('type') == 'dir':
structure['directories'].append(item.get('name', ''))
return structure
def generate_synthetic_examples(self, count: int = 100):
"""Generate synthetic training examples"""
logger.info(f"Generating {count} synthetic examples...")
templates = [
{
'description': 'REST API for user management',
'requirements': ['User registration', 'User authentication', 'Profile management'],
'frameworks': ['express', 'fastapi', 'django']
},
{
'description': 'E-commerce backend API',
'requirements': ['Product catalog', 'Shopping cart', 'Order processing', 'Payment integration'],
'frameworks': ['nestjs', 'fastapi', 'django']
},
{
'description': 'Task management system',
'requirements': ['Task CRUD operations', 'User assignments', 'Status tracking'],
'frameworks': ['express', 'flask', 'gin']
},
{
'description': 'Blog platform backend',
'requirements': ['Article management', 'User comments', 'Category system'],
'frameworks': ['express', 'django', 'fastapi']
}
]
for _ in range(count):
template = random.choice(templates)
framework = random.choice(template['frameworks'])
code_files = self._generate_code_for_template(template, framework)
example = CodeExample(
description=template['description'],
requirements=template['requirements'],
framework=framework,
language='python' if framework in ['fastapi', 'django', 'flask'] else 'javascript',
code_files=code_files,
project_structure=self._generate_synthetic_structure(framework),
metadata={'synthetic': True}
)
self.collected_examples.append(example)
def _generate_code_for_template(self, template: Dict, framework: str) -> Dict[str, str]:
"""Generate code files for a template and framework"""
if framework == 'express':
return {
'package.json': json.dumps({
"name": template['description'].lower().replace(' ', '-'),
"version": "1.0.0",
"dependencies": {
"express": "^4.18.0",
"mongoose": "^6.0.0",
"bcrypt": "^5.0.0",
"jsonwebtoken": "^8.5.0"
}
}, indent=2),
'app.js': '''const express = require('express');
const mongoose = require('mongoose');
const app = express();
// Middleware
app.use(express.json());
// Routes
app.get('/health', (req, res) => {
res.json({ status: 'OK' });
});
// Start server
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
console.log(`Server running on port ${PORT}`);
});
module.exports = app;'''
}
elif framework == 'fastapi':
return {
'requirements.txt': '''fastapi==0.68.0
uvicorn==0.15.0
sqlalchemy==1.4.23
pydantic==1.8.2''',
'main.py': '''from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional
app = FastAPI()
class Item(BaseModel):
id: Optional[int] = None
name: str
description: str
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.get("/health")
async def health_check():
return {"status": "OK"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)'''
}
else:
return {'placeholder.txt': 'Generated code placeholder'}
def _generate_synthetic_structure(self, framework: str) -> Dict[str, Any]:
"""Generate project structure for framework"""
if framework in ['express', 'nestjs']:
return {
'files': ['package.json', 'app.js', 'README.md'],
'directories': ['routes', 'controllers', 'middleware', 'models'],
'total_files': 3,
'has_tests': True,
'has_docs': True
}
elif framework in ['fastapi', 'django', 'flask']:
return {
'files': ['requirements.txt', 'main.py', 'README.md'],
'directories': ['models', 'routes', 'services'],
'total_files': 3,
'has_tests': True,
'has_docs': True
}
else:
return {}
def save_dataset(self, filepath: str):
"""Save collected examples to file"""
data = [asdict(example) for example in self.collected_examples]
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
logger.info(f"Saved {len(data)} examples to {filepath}")
class DataPreprocessor:
"""Preprocesses collected data for training"""
def __init__(self, tokenizer_name: str = "microsoft/DialoGPT-medium"):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Ensure we do not exceed model's maximum positional embeddings (GPT-2/DialoGPT: 1024)
try:
model_max = getattr(self.tokenizer, 'model_max_length', 1024)
# Some tokenizers set a very large sentinel value; cap at 1024 for GPT-2 family
if model_max and model_max > 0 and model_max < 100000:
self.max_length = min(1024, int(model_max))
else:
self.max_length = 1024
except Exception:
self.max_length = 1024
def preprocess_examples(self, examples: List[CodeExample]) -> List[Dict[str, str]]:
"""Convert examples to training format"""
processed: List[Dict[str, str]] = []
for example in examples:
input_text = self._create_input_text(example)
output_text = self._create_output_text(example)
processed.append({
'input': input_text,
'output': output_text,
'framework': example.framework,
'language': example.language
})
return processed
def _create_input_text(self, example: CodeExample) -> str:
"""Create model input text"""
input_parts: List[str] = [
f"Description: {example.description}",
f"Framework: {example.framework}",
f"Language: {example.language}",
"Requirements:",
]
for req in example.requirements:
input_parts.append(f"- {req}")
input_parts.append("Generate the backend application:")
return "\n".join(input_parts)
def _create_output_text(self, example: CodeExample) -> str:
"""Create model output text"""
output_parts: List[str] = []
output_parts.append("Project Structure:")
for directory in example.project_structure.get('directories', []):
output_parts.append(f"/{directory}/")
output_parts.append("\nGenerated Files:")
for filename, content in example.code_files.items():
output_parts.append(f"\n--- {filename} ---")
output_parts.append(content)
output_parts.append("--- End ---")
return "\n".join(output_parts)
def create_training_dataset(self, processed_examples: List[Dict[str, str]]) -> HFDataset:
"""Create Hugging Face dataset for training"""
def tokenize_function(examples: Dict[str, List[str]]):
texts: List[str] = []
for inp, out in zip(examples['input'], examples['output']):
text = f"<|startoftext|>{inp}<|separator|>{out}<|endoftext|>"
texts.append(text)
return self.tokenizer(
texts,
truncation=True,
padding=True,
max_length=self.max_length
)
dataset_dict = {
'input': [ex['input'] for ex in processed_examples],
'output': [ex['output'] for ex in processed_examples],
'framework': [ex['framework'] for ex in processed_examples],
'language': [ex['language'] for ex in processed_examples]
}
dataset = HFDataset.from_dict(dataset_dict)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
return tokenized_dataset
class CodeGenerationModel:
"""Custom model for backend code generation"""
def __init__(self, base_model: str = "microsoft/DialoGPT-medium"):
self.base_model = base_model
self.tokenizer = AutoTokenizer.from_pretrained(base_model)
self.model = AutoModelForCausalLM.from_pretrained(base_model)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def fine_tune(self, dataset: HFDataset, output_dir: str = "./trained_model"):
"""Fine-tune the model on backend code generation"""
logger.info("Starting model fine-tuning...")
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=1, # Reduced from 3
per_device_train_batch_size=1, # Reduced from 2 for memory
per_device_eval_batch_size=1, # Reduced from 2
warmup_steps=50, # Reduced from 500
max_steps=100, # Drastically reduced from 2000
logging_steps=10, # More frequent logging
save_steps=50, # More frequent saves
save_total_limit=2,
prediction_loss_only=True,
fp16=torch.cuda.is_available(),
dataloader_pin_memory=False,
gradient_accumulation_steps=4, # Accumulate gradients for effective larger batch
learning_rate=5e-5, # Explicit learning rate
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False,
)
train_size = int(0.8 * len(dataset))
eval_size = len(dataset) - train_size
train_dataset, eval_dataset = torch.utils.data.random_split(
dataset, [train_size, eval_size]
)
trainer = Trainer(
model=self.model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model()
logger.info("Fine-tuning completed!")
def generate_code(self, description: str, framework: str, language: str) -> str:
"""Generate backend code for given requirements"""
input_text = (
f"Description: {description}\n"
f"Framework: {framework}\n"
f"Language: {language}\n"
f"Generate the backend application:"
)
# Respect model's max position embeddings (GPT-2/DialoGPT is typically 1024)
model_max_len = getattr(self.tokenizer, 'model_max_length', 1024)
max_len = 1024 if model_max_len is None or model_max_len > 100000 else min(1024, int(model_max_len))
inputs = self.tokenizer.encode(input_text, return_tensors='pt', truncation=True, max_length=max_len)
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=max_len,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text[len(input_text):]
class ModelEvaluator:
"""Evaluates model performance"""
def __init__(self):
self.metrics: Dict[str, float] = {}
def evaluate_code_quality(self, generated_code: str, language: str) -> Dict[str, float]:
"""Evaluate generated code quality"""
metrics = {
'syntax_correctness': self._check_syntax(generated_code, language),
'completeness': self._check_completeness(generated_code),
'best_practices': self._check_best_practices(generated_code, language)
}
return metrics
def _check_syntax(self, code: str, language: str) -> float:
"""Check if generated code has valid syntax"""
if language == 'python':
try:
ast.parse(code)
return 1.0
except SyntaxError:
return 0.0
elif language == 'javascript':
if '{' in code and '}' in code:
return 0.8
return 0.5
return 0.5
def _check_completeness(self, code: str) -> float:
"""Check if code appears complete"""
completeness_indicators = [
'import', 'require', 'function', 'def', 'class',
'app.', 'router.', '@app.', 'app.listen', 'if __name__'
]
indicators_found = sum(1 for indicator in completeness_indicators if indicator in code)
return min(indicators_found / 3.0, 1.0)
def _check_best_practices(self, code: str, language: str) -> float:
"""Check adherence to best practices"""
best_practices_score = 0.0
if 'try:' in code or 'catch' in code:
best_practices_score += 0.2
if any(comment in code for comment in ['#', '//', '/*']):
best_practices_score += 0.2
if language == 'python':
if 'if __name__ == "__main__"' in code:
best_practices_score += 0.2
elif language == 'javascript':
if 'const' in code or 'let' in code:
best_practices_score += 0.2
return min(best_practices_score, 1.0)
def benchmark_model(self, model: 'CodeGenerationModel', test_cases: List[Dict]) -> Dict[str, float]:
"""Benchmark model on test cases"""
total_scores = {'syntax': 0.0, 'completeness': 0.0, 'best_practices': 0.0}
for i, test_case in enumerate(test_cases):
generated_code = model.generate_code(
test_case['description'],
test_case['framework'],
test_case['language']
)
scores = self.evaluate_code_quality(generated_code, test_case['language'])
total_scores['syntax'] += scores['syntax_correctness']
total_scores['completeness'] += scores['completeness']
total_scores['best_practices'] += scores['best_practices']
logger.info(f"Test case {i+1}: {scores}")
num_cases = max(1, len(test_cases))
avg_scores = {key: value / num_cases for key, value in total_scores.items()}
return avg_scores
class TrainingPipeline:
"""Main training pipeline orchestrator"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.data_collector = DataCollector()
self.preprocessor = DataPreprocessor(config.get('tokenizer', 'microsoft/DialoGPT-medium'))
self.model = CodeGenerationModel(config.get('base_model', 'microsoft/DialoGPT-medium'))
self.evaluator = ModelEvaluator()
async def run_full_pipeline(self):
"""Run the complete training pipeline"""
logger.info("Starting full training pipeline...")
logger.info("Step 1: Collecting training data...")
if self.data_collector.github_token:
github_queries = [
'express api backend',
'fastapi python backend',
'django rest api',
'nodejs backend server',
'flask api backend'
]
await self.data_collector.collect_github_repositories(github_queries, max_repos=50)
self.data_collector.generate_synthetic_examples(count=200)
self.data_collector.save_dataset('raw_dataset.json')
logger.info("Step 2: Preprocessing data...")
processed_examples = self.preprocessor.preprocess_examples(self.data_collector.collected_examples)
training_dataset = self.preprocessor.create_training_dataset(processed_examples)
logger.info("Step 3: Training model...")
self.model.fine_tune(training_dataset, output_dir=self.config.get('output_dir', './trained_model'))
logger.info("Step 4: Evaluating model...")
test_cases = [
{
'description': 'REST API for user management with authentication',
'framework': 'express',
'language': 'javascript'
},
{
'description': 'FastAPI backend for e-commerce platform',
'framework': 'fastapi',
'language': 'python'
},
{
'description': 'Django REST API for blog platform',
'framework': 'django',
'language': 'python'
}
]
benchmark_results = self.evaluator.benchmark_model(self.model, test_cases)
logger.info(f"Benchmark results: {benchmark_results}")
logger.info("Training pipeline completed!")
return benchmark_results
if __name__ == "__main__":
config = {
'base_model': 'microsoft/DialoGPT-medium',
'tokenizer': 'microsoft/DialoGPT-medium',
'output_dir': './backend_code_model',
'github_token': os.getenv('GITHUB_TOKEN'),
}
pipeline = TrainingPipeline(config)
asyncio.run(pipeline.run_full_pipeline())
logger.info("\nTesting trained model...")
generated_code = pipeline.model.generate_code(
description="Create a REST API for managing tasks with CRUD operations",
framework="express",
language="javascript"
)
print("\nGenerated Code:")
print("=" * 50)
print(generated_code)
|