Techta's picture
Sure! Pl
472e2e9
#!/usr/bin/env python3
"""
Backend Code Generation API Service
===================================
Production-ready API service for serving the trained backend code generation model.
Provides RESTful endpoints for generating complete backend applications.
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, FileResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Any
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
import zipfile
import tempfile
import os
import uuid
from datetime import datetime
import asyncio
import logging
from pathlib import Path
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Pydantic models for API
class CodeGenerationRequest(BaseModel):
description: str = Field(..., description="Description of the backend application to generate")
framework: str = Field(..., description="Target framework (express, fastapi, django, flask)")
language: str = Field(..., description="Programming language (javascript, python)")
requirements: List[str] = Field(default=[], description="List of specific requirements")
project_name: Optional[str] = Field(default=None, description="Custom project name")
class Config:
schema_extra = {
"example": {
"description": "E-commerce API with user authentication and product management",
"framework": "fastapi",
"language": "python",
"requirements": [
"User registration and login",
"JWT authentication",
"Product CRUD operations",
"Shopping cart functionality",
"Order management"
],
"project_name": "ecommerce-api"
}
}
class GenerationResponse(BaseModel):
task_id: str
status: str
message: str
estimated_time: int
class GenerationStatus(BaseModel):
task_id: str
status: str # pending, processing, completed, failed
progress: int # 0-100
message: str
generated_files: Optional[Dict[str, str]] = None
download_url: Optional[str] = None
error: Optional[str] = None
class GeneratedProject(BaseModel):
project_name: str
framework: str
language: str
files: Dict[str, str]
structure: Dict[str, Any]
setup_instructions: List[str]
features: List[str]
# Global model instance
class ModelManager:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.loaded = False
async def load_model(self, model_path: str = "./trained_model"):
"""Load the trained model asynchronously"""
try:
logger.info(f"Loading model from {model_path} on {self.device}")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None
)
if self.device == "cpu":
self.model = self.model.to(self.device)
self.loaded = True
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def generate_code(self, prompt: str, max_tokens: int = 1024) -> str:
"""Generate code using the trained model"""
if not self.loaded:
raise RuntimeError("Model not loaded")
inputs = self.tokenizer.encode(prompt, return_tensors='pt')
inputs = inputs.to(self.device)
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=min(max_tokens, 1024),
num_return_sequences=1,
temperature=0.7,
do_sample=True,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text[len(self.tokenizer.decode(inputs[0], skip_special_tokens=True)):]
# Global instances
model_manager = ModelManager()
generation_tasks = {} # Store generation tasks
# FastAPI app
app = FastAPI(
title="Backend Code Generation API",
description="AI-powered backend application generator",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
model_path = os.getenv("MODEL_PATH", "./trained_model")
await model_manager.load_model(model_path)
@app.get("/")
async def root():
"""API root endpoint"""
return {
"service": "Backend Code Generation API",
"version": "1.0.0",
"status": "running",
"model_loaded": model_manager.loaded,
"endpoints": {
"generate": "/api/v1/generate",
"status": "/api/v1/status/{task_id}",
"download": "/api/v1/download/{task_id}",
"health": "/health"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "OK",
"timestamp": datetime.utcnow().isoformat(),
"model_loaded": model_manager.loaded,
"device": model_manager.device if model_manager.loaded else None
}
@app.post("/api/v1/generate", response_model=GenerationResponse)
async def generate_backend(
request: CodeGenerationRequest,
background_tasks: BackgroundTasks
):
"""Generate a complete backend application"""
if not model_manager.loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
# Create unique task ID
task_id = str(uuid.uuid4())
# Initialize task status
generation_tasks[task_id] = GenerationStatus(
task_id=task_id,
status="pending",
progress=0,
message="Task queued for processing"
)
# Start background generation
background_tasks.add_task(
generate_project_background,
task_id,
request
)
return GenerationResponse(
task_id=task_id,
status="accepted",
message="Code generation started",
estimated_time=60 # seconds
)
@app.get("/api/v1/status/{task_id}", response_model=GenerationStatus)
async def get_generation_status(task_id: str):
"""Get the status of a generation task"""
if task_id not in generation_tasks:
raise HTTPException(status_code=404, detail="Task not found")
return generation_tasks[task_id]
@app.get("/api/v1/download/{task_id}")
async def download_generated_project(task_id: str):
"""Download the generated project as a ZIP file"""
if task_id not in generation_tasks:
raise HTTPException(status_code=404, detail="Task not found")
task = generation_tasks[task_id]
if task.status != "completed":
raise HTTPException(status_code=400, detail="Generation not completed")
if not task.download_url:
raise HTTPException(status_code=404, detail="Download file not available")
if not os.path.exists(task.download_url):
raise HTTPException(status_code=404, detail="Download file not found")
return FileResponse(
path=task.download_url,
filename=f"generated_project_{task_id}.zip",
media_type="application/zip"
)
@app.delete("/api/v1/cleanup/{task_id}")
async def cleanup_task(task_id: str):
"""Clean up task files and data"""
if task_id not in generation_tasks:
raise HTTPException(status_code=404, detail="Task not found")
task = generation_tasks[task_id]
# Remove download file if exists
if task.download_url and os.path.exists(task.download_url):
os.remove(task.download_url)
# Remove task from memory
del generation_tasks[task_id]
return {"message": "Task cleaned up successfully"}
async def generate_project_background(task_id: str, request: CodeGenerationRequest):
"""Background task for generating the complete project"""
task = generation_tasks[task_id]
try:
# Update status
task.status = "processing"
task.progress = 10
task.message = "Analyzing requirements..."
# Create the generation prompt
prompt = create_generation_prompt(request)
# Update progress
task.progress = 30
task.message = "Generating application structure..."
# Generate code using the model
generated_code = model_manager.generate_code(prompt, max_tokens=1024)
# Update progress
task.progress = 60
task.message = "Processing generated code..."
# Parse and structure the generated code
project_files = parse_generated_code(generated_code, request)
# Update progress
task.progress = 80
task.message = "Creating project files..."
# Create downloadable ZIP file
zip_path = create_project_zip(task_id, project_files, request)
# Complete the task
task.status = "completed"
task.progress = 100
task.message = "Project generated successfully"
task.generated_files = {name: "Generated" for name in project_files.keys()}
task.download_url = zip_path
except Exception as e:
logger.error(f"Generation failed for task {task_id}: {e}")
task.status = "failed"
task.error = str(e)
task.message = "Generation failed"
def create_generation_prompt(request: CodeGenerationRequest) -> str:
"""Create the prompt for the model"""
prompt_parts = [
f"Description: {request.description}",
f"Framework: {request.framework}",
f"Language: {request.language}",
]
if request.requirements:
prompt_parts.append("Requirements:")
for req in request.requirements:
prompt_parts.append(f"- {req}")
if request.project_name:
prompt_parts.append(f"Project Name: {request.project_name}")
prompt_parts.append("Generate the complete backend application with all necessary files:")
return "\n".join(prompt_parts)
def parse_generated_code(generated_code: str, request: CodeGenerationRequest) -> Dict[str, str]:
"""Parse the generated code into individual files"""
files = {}
# Simple parsing logic - in production, this should be more sophisticated
lines = generated_code.split('\n')
current_file = None
current_content = []
for line in lines:
if line.startswith('--- ') and line.endswith(' ---'):
# Save previous file
if current_file:
files[current_file] = '\n'.join(current_content)
# Start new file
current_file = line.replace('--- ', '').replace(' ---', '').strip()
current_content = []
elif current_file and not line.startswith('--- End ---'):
current_content.append(line)
# Save last file
if current_file and current_content:
files[current_file] = '\n'.join(current_content)
# If parsing failed, create basic structure based on framework
if not files:
files = create_fallback_structure(request)
return files
def create_fallback_structure(request: CodeGenerationRequest) -> Dict[str, str]:
"""Create a basic project structure if parsing fails"""
if request.framework.lower() == 'fastapi':
return {
'main.py': f'''from fastapi import FastAPI
app = FastAPI(title="{request.description}")
@app.get("/")
async def root():
return {{"message": "Hello from {request.description}"}}
@app.get("/health")
async def health():
return {{"status": "OK"}}
''',
'requirements.txt': '''fastapi==0.104.1
uvicorn[standard]==0.24.0'''
}
elif request.framework.lower() == 'express':
return {
'app.js': f'''const express = require('express');
const app = express();
app.get('/', (req, res) => {{
res.json({{ message: 'Hello from {request.description}' }});
}});
app.get('/health', (req, res) => {{
res.json({{ status: 'OK' }});
}});
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {{
console.log(`Server running on port ${{PORT}}`);
}});
''',
'package.json': json.dumps({
"name": request.project_name or "generated-backend",
"version": "1.0.0",
"main": "app.js",
"dependencies": {
"express": "^4.18.2"
}
}, indent=2)
}
else:
return {
'README.md': f'# {request.description}\n\nGenerated backend application using {request.framework}'
}
def create_project_zip(task_id: str, files: Dict[str, str], request: CodeGenerationRequest) -> str:
"""Create a ZIP file containing all project files"""
# Create temporary directory for the ZIP file
temp_dir = tempfile.gettempdir()
zip_path = os.path.join(temp_dir, f"project_{task_id}.zip")
project_name = request.project_name or f"generated_{request.framework}_app"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for filename, content in files.items():
# Add each file to the ZIP
arcname = f"{project_name}/{filename}"
zipf.writestr(arcname, content)
# Add a README with setup instructions
setup_instructions = get_setup_instructions(request.framework)
zipf.writestr(f"{project_name}/SETUP.md", setup_instructions)
return zip_path
def get_setup_instructions(framework: str) -> str:
"""Get setup instructions for the framework"""
instructions = {
'fastapi': '''# Setup Instructions
1. Install dependencies:
```bash
pip install -r requirements.txt
```
2. Run the application:
```bash
uvicorn main:app --reload
```
3. Access the API:
- API: http://localhost:8000
- Docs: http://localhost:8000/docs
''',
'express': '''# Setup Instructions
1. Install dependencies:
```bash
npm install
```
2. Run the application:
```bash
node app.js
```
3. Access the API:
- API: http://localhost:3000
''',
'django': '''# Setup Instructions
1. Install dependencies:
```bash
pip install -r requirements.txt
```
2. Run migrations:
```bash
python manage.py migrate
```
3. Run the application:
```bash
python manage.py runserver
```
4. Access the API:
- API: http://localhost:8000
- Admin: http://localhost:8000/admin
''',
'flask': '''# Setup Instructions
1. Install dependencies:
```bash
pip install -r requirements.txt
```
2. Run the application:
```bash
python run.py
```
3. Access the API:
- API: http://localhost:5000
'''
}
return instructions.get(framework, '# Setup Instructions\n\nRefer to the framework documentation for setup instructions.')
# Additional utility endpoints
@app.get("/api/v1/frameworks")
async def list_supported_frameworks():
"""List supported frameworks and languages"""
return {
"frameworks": [
{
"name": "fastapi",
"language": "python",
"description": "Modern, fast, web framework for building APIs"
},
{
"name": "express",
"language": "javascript",
"description": "Fast, unopinionated web framework for Node.js"
},
{
"name": "django",
"language": "python",
"description": "High-level Python web framework"
},
{
"name": "flask",
"language": "python",
"description": "Lightweight WSGI web application framework"
}
]
}
@app.get("/api/v1/examples")
async def get_example_requests():
"""Get example generation requests"""
return {
"examples": [
{
"name": "E-commerce API",
"request": {
"description": "Complete e-commerce backend with user management and product catalog",
"framework": "fastapi",
"language": "python",
"requirements": [
"User registration and authentication",
"Product CRUD operations",
"Shopping cart functionality",
"Order management",
"Payment processing integration"
]
}
},
{
"name": "Task Management System",
"request": {
"description": "Task management system with team collaboration",
"framework": "express",
"language": "javascript",
"requirements": [
"User authentication with JWT",
"Task CRUD operations",
"Team and project management",
"Real-time notifications",
"File attachments"
]
}
},
{
"name": "Blog Platform",
"request": {
"description": "Blog platform with content management",
"framework": "django",
"language": "python",
"requirements": [
"Article management",
"User comments and ratings",
"Category and tag system",
"SEO optimization",
"Media file handling"
]
}
}
]
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"api_service:app",
host="0.0.0.0",
port=8000,
reload=True
)