# Backend Code Generation Model - Setup & Usage Guide ## 🛠️ Installation & Setup ### 1. Install Dependencies ```bash pip install torch transformers datasets pandas numpy aiohttp requests pip install accelerate # For faster training ``` ### 2. Set Environment Variables ```bash # Optional: GitHub token for collecting real repositories export GITHUB_TOKEN="your_github_token_here" # For GPU training (if available) export CUDA_VISIBLE_DEVICES=0 ``` ### 3. Directory Structure ``` backend-ai-trainer/ ├── training_pipeline.py # Main pipeline code ├── data/ │ ├── raw_dataset.json # Collected training data │ └── processed/ # Preprocessed data ├── models/ │ ├── backend_code_model/ # Trained model output │ └── checkpoints/ # Training checkpoints └── evaluation/ ├── test_cases.json # Test scenarios └── results/ # Evaluation results ``` ## 🏃‍♂️ Quick Start ### Option A: Full Automated Pipeline ```python import asyncio from training_pipeline import TrainingPipeline config = { 'base_model': 'microsoft/DialoGPT-medium', 'output_dir': './models/backend_code_model', 'github_token': 'your_token_here', # Optional } pipeline = TrainingPipeline(config) asyncio.run(pipeline.run_full_pipeline()) ``` ### Option B: Step-by-Step Execution #### Step 1: Collect Training Data ```python from training_pipeline import DataCollector import asyncio collector = DataCollector() # Collect from GitHub (requires token) github_queries = [ 'express api backend', 'fastapi python backend', 'django rest api', 'nodejs backend server', 'flask api backend' ] asyncio.run(collector.collect_github_repositories(github_queries, max_repos=100)) # Generate synthetic examples collector.generate_synthetic_examples(count=500) # Save dataset collector.save_dataset('training_data.json') ``` #### Step 2: Preprocess Data ```python from training_pipeline import DataPreprocessor preprocessor = DataPreprocessor() processed_examples = preprocessor.preprocess_examples(collector.collected_examples) training_dataset = preprocessor.create_training_dataset(processed_examples) print(f"Created dataset with {len(training_dataset)} examples") ``` #### Step 3: Train Model ```python from training_pipeline import CodeGenerationModel model = CodeGenerationModel('microsoft/DialoGPT-medium') model.fine_tune(training_dataset, output_dir='./trained_model') ``` #### Step 4: Generate Code ```python # Generate a complete backend application generated_code = model.generate_code( description="E-commerce API with user authentication and product management", framework="fastapi", language="python" ) print("Generated Backend Application:") print("=" * 50) print(generated_code) ``` ## 🎯 Training Configuration Options ### Model Selection ```python # Lightweight for testing config['base_model'] = 'microsoft/DialoGPT-small' # Balanced performance config['base_model'] = 'microsoft/DialoGPT-medium' # High quality (requires more resources) config['base_model'] = 'microsoft/DialoGPT-large' ``` ### Training Parameters ```python training_config = { 'num_epochs': 5, # More epochs = better learning 'batch_size': 4, # Adjust based on GPU memory 'learning_rate': 5e-5, # Conservative learning rate 'max_length': 2048, # Maximum token length 'warmup_steps': 500, # Learning rate warmup 'save_steps': 1000, # Checkpoint frequency } ``` ### Framework Coverage The pipeline supports these backend frameworks: **Node.js Frameworks:** - Express.js - Most popular Node.js framework - NestJS - Enterprise-grade framework - Koa.js - Lightweight alternative **Python Frameworks:** - FastAPI - Modern, high-performance API framework - Django - Full-featured web framework - Flask - Lightweight and flexible **Go Frameworks:** - Gin - HTTP web framework - Fiber - Express-inspired framework ## 📊 Evaluation & Testing ### Automatic Quality Assessment ```python from training_pipeline import ModelEvaluator evaluator = ModelEvaluator() # Test specific code generation generated_code = model.generate_code( description="User authentication API with JWT tokens", framework="express", language="javascript" ) # Get quality scores quality_scores = evaluator.evaluate_code_quality(generated_code, "javascript") print(f"Syntax Correctness: {quality_scores['syntax_correctness']:.2f}") print(f"Completeness: {quality_scores['completeness']:.2f}") print(f"Best Practices: {quality_scores['best_practices']:.2f}") ``` ### Comprehensive Benchmarking ```python test_cases = [ { 'description': 'REST API for task management with user authentication', 'framework': 'express', 'language': 'javascript' }, { 'description': 'GraphQL API for social media platform', 'framework': 'fastapi', 'language': 'python' }, { 'description': 'Microservice for payment processing', 'framework': 'gin', 'language': 'go' } ] benchmark_results = evaluator.benchmark_model(model, test_cases) print("Overall Performance:", benchmark_results) ``` ## 🚀 Advanced Usage ### Custom Data Sources ```python # Add your own training examples custom_examples = [ { 'description': 'Custom API requirement', 'requirements': ['Custom feature 1', 'Custom feature 2'], 'framework': 'fastapi', 'language': 'python', 'code_files': { 'main.py': '# Your custom code here', 'requirements.txt': 'fastapi\nuvicorn' } } ] # Add to training data collector.collected_examples.extend([CodeExample(**ex) for ex in custom_examples]) ``` ### Fine-tuning on Specific Domains ```python # Focus training on specific application types domain_specific_queries = [ 'microservices architecture', 'api gateway implementation', 'database orm integration', 'authentication middleware', 'rate limiting api' ] asyncio.run(collector.collect_github_repositories(domain_specific_queries)) ``` ### Export Trained Model ```python # Save model for deployment model.model.save_pretrained('./production_model') model.tokenizer.save_pretrained('./production_model') # Load for inference from transformers import AutoModelForCausalLM, AutoTokenizer production_model = AutoModelForCausalLM.from_pretrained('./production_model') production_tokenizer = AutoTokenizer.from_pretrained('./production_model') ``` ## 🔧 Troubleshooting ### Common Issues **1. Out of Memory Errors** ```python # Reduce batch size config['per_device_train_batch_size'] = 1 config['gradient_accumulation_steps'] = 4 # Use gradient checkpointing config['gradient_checkpointing'] = True ``` **2. Slow Training** ```python # Enable mixed precision (if GPU supports it) config['fp16'] = True # Use multiple GPUs config['dataloader_num_workers'] = 4 ``` **3. Poor Code Quality** ```python # Increase training data diversity collector.generate_synthetic_examples(count=1000) # Extend training duration config['num_train_epochs'] = 10 ``` ### Performance Optimization **For CPU Training:** ```python config['dataloader_pin_memory'] = False config['per_device_train_batch_size'] = 1 ``` **For GPU Training:** ```python config['fp16'] = True config['dataloader_pin_memory'] = True config['per_device_train_batch_size'] = 4 ``` ## 📈 Expected Results After training on ~500-1000 examples, you should expect: - **Syntax Correctness**: 85-95% - **Code Completeness**: 80-90% - **Best Practices**: 70-85% - **Framework Coverage**: All major Node.js and Python frameworks - **Generation Speed**: 2-5 seconds per application ## 🔄 Continuous Improvement ### Regular Retraining ```python # Schedule weekly data collection import schedule def update_training_data(): asyncio.run(collector.collect_github_repositories(['new backend trends'])) schedule.every().week.do(update_training_data) ``` ### A/B Testing Different Models ```python models_to_compare = [ 'microsoft/DialoGPT-medium', 'microsoft/DialoGPT-large', 'gpt2-medium' ] for base_model in models_to_compare: model = CodeGenerationModel(base_model) results = evaluator.benchmark_model(model, test_cases) print(f"{base_model}: {results}") ``` ## 🎯 Next Steps 1. **Start Small**: Begin with synthetic data and 100-200 examples 2. **Add Real Data**: Integrate GitHub repositories gradually 3. **Evaluate Regularly**: Monitor quality metrics after each training session 4. **Expand Frameworks**: Add support for new frameworks as needed 5. **Production Deploy**: Export model for API deployment This pipeline provides a complete foundation for building your own backend code generation AI. The modular design allows you to customize and extend each component based on your specific needs.