#!/usr/bin/env python3 """ Backend Code Generation API Service =================================== Production-ready API service for serving the trained backend code generation model. Provides RESTful endpoints for generating complete backend applications. """ from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, FileResponse from pydantic import BaseModel, Field from typing import List, Dict, Optional, Any import torch from transformers import AutoModelForCausalLM, AutoTokenizer import json import zipfile import tempfile import os import uuid from datetime import datetime import asyncio import logging from pathlib import Path # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Pydantic models for API class CodeGenerationRequest(BaseModel): description: str = Field(..., description="Description of the backend application to generate") framework: str = Field(..., description="Target framework (express, fastapi, django, flask)") language: str = Field(..., description="Programming language (javascript, python)") requirements: List[str] = Field(default=[], description="List of specific requirements") project_name: Optional[str] = Field(default=None, description="Custom project name") class Config: schema_extra = { "example": { "description": "E-commerce API with user authentication and product management", "framework": "fastapi", "language": "python", "requirements": [ "User registration and login", "JWT authentication", "Product CRUD operations", "Shopping cart functionality", "Order management" ], "project_name": "ecommerce-api" } } class GenerationResponse(BaseModel): task_id: str status: str message: str estimated_time: int class GenerationStatus(BaseModel): task_id: str status: str # pending, processing, completed, failed progress: int # 0-100 message: str generated_files: Optional[Dict[str, str]] = None download_url: Optional[str] = None error: Optional[str] = None class GeneratedProject(BaseModel): project_name: str framework: str language: str files: Dict[str, str] structure: Dict[str, Any] setup_instructions: List[str] features: List[str] # Global model instance class ModelManager: def __init__(self): self.model = None self.tokenizer = None self.device = "cuda" if torch.cuda.is_available() else "cpu" self.loaded = False async def load_model(self, model_path: str = "./trained_model"): """Load the trained model asynchronously""" try: logger.info(f"Loading model from {model_path} on {self.device}") self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, device_map="auto" if self.device == "cuda" else None ) if self.device == "cpu": self.model = self.model.to(self.device) self.loaded = True logger.info("Model loaded successfully!") except Exception as e: logger.error(f"Failed to load model: {e}") raise def generate_code(self, prompt: str, max_tokens: int = 1024) -> str: """Generate code using the trained model""" if not self.loaded: raise RuntimeError("Model not loaded") inputs = self.tokenizer.encode(prompt, return_tensors='pt') inputs = inputs.to(self.device) with torch.no_grad(): outputs = self.model.generate( inputs, max_length=min(max_tokens, 1024), num_return_sequences=1, temperature=0.7, do_sample=True, top_p=0.9, pad_token_id=self.tokenizer.eos_token_id, repetition_penalty=1.1 ) generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text[len(self.tokenizer.decode(inputs[0], skip_special_tokens=True)):] # Global instances model_manager = ModelManager() generation_tasks = {} # Store generation tasks # FastAPI app app = FastAPI( title="Backend Code Generation API", description="AI-powered backend application generator", version="1.0.0", docs_url="/docs", redoc_url="/redoc" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Configure for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.on_event("startup") async def startup_event(): """Load model on startup""" model_path = os.getenv("MODEL_PATH", "./trained_model") await model_manager.load_model(model_path) @app.get("/") async def root(): """API root endpoint""" return { "service": "Backend Code Generation API", "version": "1.0.0", "status": "running", "model_loaded": model_manager.loaded, "endpoints": { "generate": "/api/v1/generate", "status": "/api/v1/status/{task_id}", "download": "/api/v1/download/{task_id}", "health": "/health" } } @app.get("/health") async def health_check(): """Health check endpoint""" return { "status": "OK", "timestamp": datetime.utcnow().isoformat(), "model_loaded": model_manager.loaded, "device": model_manager.device if model_manager.loaded else None } @app.post("/api/v1/generate", response_model=GenerationResponse) async def generate_backend( request: CodeGenerationRequest, background_tasks: BackgroundTasks ): """Generate a complete backend application""" if not model_manager.loaded: raise HTTPException(status_code=503, detail="Model not loaded") # Create unique task ID task_id = str(uuid.uuid4()) # Initialize task status generation_tasks[task_id] = GenerationStatus( task_id=task_id, status="pending", progress=0, message="Task queued for processing" ) # Start background generation background_tasks.add_task( generate_project_background, task_id, request ) return GenerationResponse( task_id=task_id, status="accepted", message="Code generation started", estimated_time=60 # seconds ) @app.get("/api/v1/status/{task_id}", response_model=GenerationStatus) async def get_generation_status(task_id: str): """Get the status of a generation task""" if task_id not in generation_tasks: raise HTTPException(status_code=404, detail="Task not found") return generation_tasks[task_id] @app.get("/api/v1/download/{task_id}") async def download_generated_project(task_id: str): """Download the generated project as a ZIP file""" if task_id not in generation_tasks: raise HTTPException(status_code=404, detail="Task not found") task = generation_tasks[task_id] if task.status != "completed": raise HTTPException(status_code=400, detail="Generation not completed") if not task.download_url: raise HTTPException(status_code=404, detail="Download file not available") if not os.path.exists(task.download_url): raise HTTPException(status_code=404, detail="Download file not found") return FileResponse( path=task.download_url, filename=f"generated_project_{task_id}.zip", media_type="application/zip" ) @app.delete("/api/v1/cleanup/{task_id}") async def cleanup_task(task_id: str): """Clean up task files and data""" if task_id not in generation_tasks: raise HTTPException(status_code=404, detail="Task not found") task = generation_tasks[task_id] # Remove download file if exists if task.download_url and os.path.exists(task.download_url): os.remove(task.download_url) # Remove task from memory del generation_tasks[task_id] return {"message": "Task cleaned up successfully"} async def generate_project_background(task_id: str, request: CodeGenerationRequest): """Background task for generating the complete project""" task = generation_tasks[task_id] try: # Update status task.status = "processing" task.progress = 10 task.message = "Analyzing requirements..." # Create the generation prompt prompt = create_generation_prompt(request) # Update progress task.progress = 30 task.message = "Generating application structure..." # Generate code using the model generated_code = model_manager.generate_code(prompt, max_tokens=1024) # Update progress task.progress = 60 task.message = "Processing generated code..." # Parse and structure the generated code project_files = parse_generated_code(generated_code, request) # Update progress task.progress = 80 task.message = "Creating project files..." # Create downloadable ZIP file zip_path = create_project_zip(task_id, project_files, request) # Complete the task task.status = "completed" task.progress = 100 task.message = "Project generated successfully" task.generated_files = {name: "Generated" for name in project_files.keys()} task.download_url = zip_path except Exception as e: logger.error(f"Generation failed for task {task_id}: {e}") task.status = "failed" task.error = str(e) task.message = "Generation failed" def create_generation_prompt(request: CodeGenerationRequest) -> str: """Create the prompt for the model""" prompt_parts = [ f"Description: {request.description}", f"Framework: {request.framework}", f"Language: {request.language}", ] if request.requirements: prompt_parts.append("Requirements:") for req in request.requirements: prompt_parts.append(f"- {req}") if request.project_name: prompt_parts.append(f"Project Name: {request.project_name}") prompt_parts.append("Generate the complete backend application with all necessary files:") return "\n".join(prompt_parts) def parse_generated_code(generated_code: str, request: CodeGenerationRequest) -> Dict[str, str]: """Parse the generated code into individual files""" files = {} # Simple parsing logic - in production, this should be more sophisticated lines = generated_code.split('\n') current_file = None current_content = [] for line in lines: if line.startswith('--- ') and line.endswith(' ---'): # Save previous file if current_file: files[current_file] = '\n'.join(current_content) # Start new file current_file = line.replace('--- ', '').replace(' ---', '').strip() current_content = [] elif current_file and not line.startswith('--- End ---'): current_content.append(line) # Save last file if current_file and current_content: files[current_file] = '\n'.join(current_content) # If parsing failed, create basic structure based on framework if not files: files = create_fallback_structure(request) return files def create_fallback_structure(request: CodeGenerationRequest) -> Dict[str, str]: """Create a basic project structure if parsing fails""" if request.framework.lower() == 'fastapi': return { 'main.py': f'''from fastapi import FastAPI app = FastAPI(title="{request.description}") @app.get("/") async def root(): return {{"message": "Hello from {request.description}"}} @app.get("/health") async def health(): return {{"status": "OK"}} ''', 'requirements.txt': '''fastapi==0.104.1 uvicorn[standard]==0.24.0''' } elif request.framework.lower() == 'express': return { 'app.js': f'''const express = require('express'); const app = express(); app.get('/', (req, res) => {{ res.json({{ message: 'Hello from {request.description}' }}); }}); app.get('/health', (req, res) => {{ res.json({{ status: 'OK' }}); }}); const PORT = process.env.PORT || 3000; app.listen(PORT, () => {{ console.log(`Server running on port ${{PORT}}`); }}); ''', 'package.json': json.dumps({ "name": request.project_name or "generated-backend", "version": "1.0.0", "main": "app.js", "dependencies": { "express": "^4.18.2" } }, indent=2) } else: return { 'README.md': f'# {request.description}\n\nGenerated backend application using {request.framework}' } def create_project_zip(task_id: str, files: Dict[str, str], request: CodeGenerationRequest) -> str: """Create a ZIP file containing all project files""" # Create temporary directory for the ZIP file temp_dir = tempfile.gettempdir() zip_path = os.path.join(temp_dir, f"project_{task_id}.zip") project_name = request.project_name or f"generated_{request.framework}_app" with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for filename, content in files.items(): # Add each file to the ZIP arcname = f"{project_name}/{filename}" zipf.writestr(arcname, content) # Add a README with setup instructions setup_instructions = get_setup_instructions(request.framework) zipf.writestr(f"{project_name}/SETUP.md", setup_instructions) return zip_path def get_setup_instructions(framework: str) -> str: """Get setup instructions for the framework""" instructions = { 'fastapi': '''# Setup Instructions 1. Install dependencies: ```bash pip install -r requirements.txt ``` 2. Run the application: ```bash uvicorn main:app --reload ``` 3. Access the API: - API: http://localhost:8000 - Docs: http://localhost:8000/docs ''', 'express': '''# Setup Instructions 1. Install dependencies: ```bash npm install ``` 2. Run the application: ```bash node app.js ``` 3. Access the API: - API: http://localhost:3000 ''', 'django': '''# Setup Instructions 1. Install dependencies: ```bash pip install -r requirements.txt ``` 2. Run migrations: ```bash python manage.py migrate ``` 3. Run the application: ```bash python manage.py runserver ``` 4. Access the API: - API: http://localhost:8000 - Admin: http://localhost:8000/admin ''', 'flask': '''# Setup Instructions 1. Install dependencies: ```bash pip install -r requirements.txt ``` 2. Run the application: ```bash python run.py ``` 3. Access the API: - API: http://localhost:5000 ''' } return instructions.get(framework, '# Setup Instructions\n\nRefer to the framework documentation for setup instructions.') # Additional utility endpoints @app.get("/api/v1/frameworks") async def list_supported_frameworks(): """List supported frameworks and languages""" return { "frameworks": [ { "name": "fastapi", "language": "python", "description": "Modern, fast, web framework for building APIs" }, { "name": "express", "language": "javascript", "description": "Fast, unopinionated web framework for Node.js" }, { "name": "django", "language": "python", "description": "High-level Python web framework" }, { "name": "flask", "language": "python", "description": "Lightweight WSGI web application framework" } ] } @app.get("/api/v1/examples") async def get_example_requests(): """Get example generation requests""" return { "examples": [ { "name": "E-commerce API", "request": { "description": "Complete e-commerce backend with user management and product catalog", "framework": "fastapi", "language": "python", "requirements": [ "User registration and authentication", "Product CRUD operations", "Shopping cart functionality", "Order management", "Payment processing integration" ] } }, { "name": "Task Management System", "request": { "description": "Task management system with team collaboration", "framework": "express", "language": "javascript", "requirements": [ "User authentication with JWT", "Task CRUD operations", "Team and project management", "Real-time notifications", "File attachments" ] } }, { "name": "Blog Platform", "request": { "description": "Blog platform with content management", "framework": "django", "language": "python", "requirements": [ "Article management", "User comments and ratings", "Category and tag system", "SEO optimization", "Media file handling" ] } } ] } if __name__ == "__main__": import uvicorn uvicorn.run( "api_service:app", host="0.0.0.0", port=8000, reload=True )