import torch import torch.nn as nn import torch.nn.functional as F import math class RotaryPositionalEmbedding(nn.Module): """RoPE - Rotary Position Embedding""" def __init__(self, dim, max_seq_len=2048, base=10000): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.max_seq_len = max_seq_len def forward(self, seq_len, device): t = torch.arange(seq_len, device=device).type_as(self.inv_freq) freqs = torch.einsum('i,j->ij', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) return emb.cos(), emb.sin() def apply_rotary_pos_emb(q, k, cos, sin): """Aplica RoPE a queries y keys""" def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MultiHeadSelfAttention(nn.Module): """Multi-Head Self-Attention con RoPE y optimizaciones""" def __init__(self, d_model, n_heads, dropout=0.1, max_seq_len=2048): super().__init__() assert d_model % n_heads == 0 self.d_model = d_model self.n_heads = n_heads self.d_k = d_model // n_heads self.q_linear = nn.Linear(d_model, d_model, bias=False) self.k_linear = nn.Linear(d_model, d_model, bias=False) self.v_linear = nn.Linear(d_model, d_model, bias=False) self.out_linear = nn.Linear(d_model, d_model, bias=False) self.dropout = nn.Dropout(dropout) self.attn_dropout = nn.Dropout(dropout) self.rope = RotaryPositionalEmbedding(self.d_k, max_seq_len) self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') def forward(self, x, mask=None): batch_size, seq_len, d_model = x.size() Q = self.q_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) K = self.k_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) V = self.v_linear(x).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) cos, sin = self.rope(seq_len, x.device) cos = cos[None, None, :, :] sin = sin[None, None, :, :] Q, K = apply_rotary_pos_emb(Q, K, cos, sin) if self.flash and mask is None: context = F.scaled_dot_product_attention( Q, K, V, attn_mask=None, dropout_p=self.dropout.p if self.training else 0.0, is_causal=True ) else: scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) attn_weights = F.softmax(scores, dim=-1) attn_weights = self.attn_dropout(attn_weights) context = torch.matmul(attn_weights, V) context = context.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model) output = self.out_linear(context) return self.dropout(output) class SwiGLU(nn.Module): """SwiGLU activation""" def __init__(self, d_model, d_ff, dropout=0.1): super().__init__() self.w1 = nn.Linear(d_model, d_ff, bias=False) self.w2 = nn.Linear(d_ff, d_model, bias=False) self.w3 = nn.Linear(d_model, d_ff, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x))) class FeedForward(nn.Module): """Feed-Forward estándar""" def __init__(self, d_model, d_ff, dropout=0.1): super().__init__() self.linear1 = nn.Linear(d_model, d_ff) self.linear2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.linear2(self.dropout(F.gelu(self.linear1(x)))) class RMSNorm(nn.Module): """RMSNorm""" def __init__(self, dim, eps=1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return x * norm * self.weight class TransformerBlock(nn.Module): """Transformer Block mejorado""" def __init__(self, d_model, n_heads, d_ff, dropout=0.1, max_seq_len=2048, use_swiglu=True): super().__init__() self.attention = MultiHeadSelfAttention(d_model, n_heads, dropout, max_seq_len) if use_swiglu: self.feed_forward = SwiGLU(d_model, d_ff, dropout) else: self.feed_forward = FeedForward(d_model, d_ff, dropout) self.norm1 = RMSNorm(d_model) self.norm2 = RMSNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask=None): x = x + self.attention(self.norm1(x), mask) x = x + self.feed_forward(self.norm2(x)) return x class MTPMiniModel(nn.Module): """MTP Mini - Modelo mejorado para generación coherente""" def __init__(self, vocab_size, d_model=512, n_layers=8, n_heads=8, d_ff=2048, max_seq_len=512, dropout=0.2, use_swiglu=True): super().__init__() self.vocab_size = vocab_size self.d_model = d_model self.max_seq_len = max_seq_len self.token_embedding = nn.Embedding(vocab_size, d_model) self.dropout = nn.Dropout(dropout) self.blocks = nn.ModuleList([ TransformerBlock(d_model, n_heads, d_ff, dropout, max_seq_len, use_swiglu) for _ in range(n_layers) ]) self.norm_f = RMSNorm(d_model) self.lm_head = nn.Linear(d_model, vocab_size, bias=False) # Weight tying self.lm_head.weight = self.token_embedding.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, input_ids, targets=None, use_eos_weight=False): batch_size, seq_len = input_ids.size() mask = torch.tril(torch.ones(seq_len, seq_len, device=input_ids.device)).view(1, 1, seq_len, seq_len) x = self.dropout(self.token_embedding(input_ids)) for block in self.blocks: x = block(x, mask) x = self.norm_f(x) logits = self.lm_head(x) loss = None if targets is not None: if use_eos_weight: # Dar más peso al token EOS para aprender a terminar weights = torch.ones(self.vocab_size, device=logits.device) weights[3] = 2.0 # EOS token loss = F.cross_entropy( logits.view(-1, self.vocab_size), targets.view(-1), weight=weights, label_smoothing=0.1 ) else: loss = F.cross_entropy( logits.view(-1, self.vocab_size), targets.view(-1), label_smoothing=0.1 ) return logits, loss def generate(self, input_ids, max_new_tokens=150, temperature=0.7, top_k=40, top_p=0.92, repetition_penalty=1.15, min_length=20, eos_token_id=3, stop_sequences=None): """Generación mejorada con control de longitud y coherencia""" self.eval() generated = input_ids.clone() generated_text_tokens = 0 with torch.no_grad(): for step in range(max_new_tokens): input_ids_cond = generated if generated.size(1) <= self.max_seq_len else generated[:, -self.max_seq_len:] logits, _ = self(input_ids_cond) logits = logits[:, -1, :].clone() # Repetition penalty mejorado if repetition_penalty != 1.0: for token_id in set(generated[0].tolist()): if logits[0, token_id] < 0: logits[0, token_id] *= repetition_penalty else: logits[0, token_id] /= repetition_penalty # Penalizar tokens repetidos recientes más fuertemente if generated.size(1) > 10: recent_tokens = generated[0, -10:].tolist() for token_id in set(recent_tokens): count = recent_tokens.count(token_id) if count > 2: logits[0, token_id] -= count * 2.0 # No permitir EOS hasta longitud mínima if generated_text_tokens < min_length: logits[0, eos_token_id] = float('-inf') else: # Aumentar probabilidad de EOS gradualmente eos_boost = (generated_text_tokens - min_length) * 0.1 logits[0, eos_token_id] += eos_boost # Temperature logits = logits / temperature # Top-k if top_k > 0: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = float('-inf') # Top-p (nucleus) if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = float('-inf') # Sample probs = F.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) # Check for EOS if next_token.item() == eos_token_id and generated_text_tokens >= min_length: break generated = torch.cat([generated, next_token], dim=1) generated_text_tokens += 1 return generated def count_parameters(self): return sum(p.numel() for p in self.parameters() if p.requires_grad)