|
from typing import Dict |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline |
|
from io import BytesIO |
|
import base64 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
print(f"π Initializing Bh0r with Juggernaut-XL v9 as base model...") |
|
|
|
|
|
self.pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"RunDiffusion/Juggernaut-XL-v9", |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
|
|
print("β
Juggernaut-XL v9 base model loaded successfully.") |
|
|
|
|
|
print("π§© Loading Bh0r LoRA weights...") |
|
self.pipe.load_lora_weights( |
|
"Texttra/Bh0r", |
|
weight_name="Bh0r-10.safetensors", |
|
adapter_name="bh0r_lora" |
|
) |
|
self.pipe.set_adapters(["bh0r_lora"], adapter_weights=[1.0]) |
|
|
|
print("β
Bh0r LoRA loaded with 0.9 weight.") |
|
|
|
|
|
self.pipe.fuse_lora() |
|
print("π Fused LoRA into base model.") |
|
|
|
|
|
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu") |
|
print("π― Model ready on device:", "cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def __call__(self, data: Dict) -> Dict: |
|
print("Received data:", data) |
|
|
|
inputs = data.get("inputs", {}) |
|
prompt = inputs.get("prompt", "") |
|
print("Extracted prompt:", prompt) |
|
|
|
if not prompt: |
|
return {"error": "No prompt provided."} |
|
|
|
|
|
image = self.pipe( |
|
prompt, |
|
num_inference_steps=40, |
|
guidance_scale=7.0, |
|
).images[0] |
|
|
|
print("Image generated.") |
|
|
|
|
|
buffer = BytesIO() |
|
image.save(buffer, format="PNG") |
|
base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
print("Returning image.") |
|
|
|
return {"image": base64_image} |
|
|