|
from typing import Dict |
|
import torch |
|
from diffusers import FluxPipeline |
|
from io import BytesIO |
|
import base64 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
print(f"Initializing model from: {path}") |
|
|
|
self.pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
print("Loading LoRA weights from: Texttra/Cityscape_Studio") |
|
self.pipe.load_lora_weights("Texttra/Cityscape_Studio", weight_name="c1t3_v1.safetensors") |
|
self.pipe.fuse_lora(lora_scale=0.9) |
|
|
|
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu") |
|
print("Model initialized successfully.") |
|
|
|
def __call__(self, data: Dict) -> Dict: |
|
print("Received data:", data) |
|
|
|
inputs = data.get("inputs", {}) |
|
prompt = inputs.get("prompt", "") |
|
print("Extracted prompt:", prompt) |
|
|
|
if not prompt: |
|
return {"error": "No prompt provided."} |
|
|
|
image = self.pipe( |
|
prompt, |
|
num_inference_steps=50, |
|
guidance_scale=4.5 |
|
).images[0] |
|
print("Image generated.") |
|
|
|
buffer = BytesIO() |
|
image.save(buffer, format="PNG") |
|
base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
print("Returning image.") |
|
|
|
return {"image": base64_image} |
|
|
|
|