Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- TheFinAI/FinCoT
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen3-14B
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
tags:
|
11 |
+
- finance
|
12 |
+
---
|
13 |
+
# 🦙 Fino1-8B
|
14 |
+
|
15 |
+
**Fin-o1-8B** is a fine-tuned version of **Qwen3-14B**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
|
16 |
+
Check our paper arxiv.org/abs/2502.08127 for more details.
|
17 |
+
|
18 |
+
## 📌 Model Details
|
19 |
+
- **Model Name**: `Fin-o1-14B`
|
20 |
+
- **Base Model**: `Qwen3-14B`
|
21 |
+
- **Fine-Tuned On**: `TheFinAI/FinCoT` Derived from FinQA, TATQA, DocMath-Eval, Econ-Logic, BizBench-QA, DocFinQA dataset.
|
22 |
+
- **Training Method**: SFT and GRPO
|
23 |
+
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
|
24 |
+
- **Tokenizer**: Inherited from `Qwen3-8B`
|
25 |
+
|
26 |
+
|
27 |
+
## 📊 Training Configuration
|
28 |
+
- **Training Hardware**: `GPU: [e.g., 8xA100]`
|
29 |
+
- **Batch Size**: `[e.g., 16]`
|
30 |
+
- **Learning Rate**: `[e.g., 2e-5]`
|
31 |
+
- **Epochs**: `[e.g., 3]`
|
32 |
+
- **Optimizer**: `[e.g., AdamW, LAMB]`
|
33 |
+
|
34 |
+
## 🔧 Usage
|
35 |
+
To use `Fin-o1-14B` with Hugging Face's `transformers` library:
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
|
40 |
+
model_name = "TheFinAI/Fin-o1-14B"
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
44 |
+
|
45 |
+
input_text = "What is the results of 3-5?"
|
46 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
47 |
+
|
48 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
49 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
50 |
+
```
|
51 |
+
|
52 |
+
## 💡 Citation
|
53 |
+
|
54 |
+
If you use this model in your research, please cite:
|
55 |
+
```python
|
56 |
+
@article{qian2025fino1,
|
57 |
+
title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
|
58 |
+
author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
|
59 |
+
journal={arXiv preprint arXiv:2502.08127},
|
60 |
+
year={2025}
|
61 |
+
}
|