File size: 5,776 Bytes
ee415d9 ea0c841 ee415d9 7ee0c6b ee415d9 eba5c8b ee415d9 eba5c8b ee415d9 7ee0c6b f835c5b 7ee0c6b bdc874a ee415d9 eba5c8b ee415d9 eba5c8b ee415d9 eba5c8b ee415d9 eba5c8b ee415d9 bace89b ee415d9 eba5c8b ee415d9 bace89b ee415d9 eba5c8b ee415d9 43448cd bdc874a ee415d9 43448cd ee415d9 260fb53 d428a89 43448cd ee415d9 43448cd ee415d9 eba5c8b ee415d9 48935cf ee415d9 43448cd ee415d9 bace89b ee415d9 43448cd eba5c8b ee415d9 43448cd ee415d9 eba5c8b ee415d9 43448cd ee415d9 eba5c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
base_model:
- mistralai/Mistral-7B-Instruct-v0.3
base_model_relation: quantized
pipeline_tag: text2text-generation
---
# Elastic model: Mistral-7B-Instruct-v0.3. Fastest and most flexible models for self-serving.
Elastic models are the models produced by TheStage AI ANNA: Automated Neural Networks Accelerator. ANNA allows you to control model size, latency and quality with a simple slider movement. For each model, ANNA produces a series of optimized models:
* __XL__: Mathematically equivalent neural network, optimized with our DNN compiler.
* __L__: Near lossless model, with less than 1% degradation obtained on corresponding benchmarks.
* __M__: Faster model, with accuracy degradation less than 1.5%.
* __S__: The fastest model, with accuracy degradation less than 2%.
__Goals of elastic models:__
* Provide flexibility in cost vs quality selection for inference
* Provide clear quality and latency benchmarks
* Provide interface of HF libraries: transformers and diffusers with a single line of code
* Provide models supported on a wide range of hardware, which are pre-compiled and require no JIT.
* Provide the best models and service for self-hosting.
> It's important to note that specific quality degradation can vary from model to model. For instance, with an S model, you can have 0.5% degradation as well.

-----
## Inference
To infer our models, you just need to replace `transformers` import with `elastic_models.transformers`:
```python
import torch
from transformers import AutoTokenizer
from elastic_models.transformers import AutoModelForCausalLM
# Currently we require to have your HF token
# as we use original weights for part of layers and
# model confugaration as well
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
hf_token = ''
device = torch.device("cuda")
# Create mode
tokenizer = AutoTokenizer.from_pretrained(
model_name, token=hf_token
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
mode='s'
).to(device)
model.generation_config.pad_token_id = tokenizer.eos_token_id
# Inference simple as transformers library
prompt = "Describe basics of DNNs quantization."
inputs = tokenizer(prompt, return_tensors="pt")
inputs.to(device)
with torch.inference_mode:
generate_ids = model.generate(**inputs, max_length=500)
input_len = inputs['input_ids'].shape[1]
generate_ids = generate_ids[:, input_len:]
output = tokenizer.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Validate answer
print(f"# Q:\n{prompt}\n")
print(f"# A:\n{output}\n")
```
__System requirements:__
* GPUs: H100, L40s
* CPU: AMD, Intel
* Python: 3.10-3.12
To work with our models just run these lines in your terminal:
```shell
pip install thestage
pip install elastic_models[nvidia]\
--index-url https://thestage.jfrog.io/artifactory/api/pypi/pypi-thestage-ai-production/simple\
--extra-index-url https://pypi.nvidia.com\
--extra-index-url https://pypi.org/simple
pip install flash_attn==2.7.3 --no-build-isolation
pip uninstall apex
export ELASTIC_MODEL_ID_MAPPING=./model_name_id.json
```
Then go to [app.thestage.ai](https://app.thestage.ai), login and generate API token from your profile page. Set up API token as follows:
```shell
thestage config set --api-token <YOUR_API_TOKEN>
```
Congrats, now you can use accelerated models!
----
## Benchmarks
Benchmarking is one of the most important procedures during model acceleration. We aim to provide clear performance metrics for models using our algorithms. The `W8A8, int8 column` indicates that we applied W8A8 quantization with int8 data type to all linear layers and used the same calibration data as for ANNA. The S model achieves practically identical speed but much higher quality, as ANNA knows how to improve quantization quality on sensitive layers!
### Quality benchmarks
<!-- For quality evaluation we have used: #TODO link to github -->
| Metric/Model | S | M | L | XL | Original | W8A8, int8 |
|---------------|---|---|---|----|----------|------------|
| MMLU | 59.7 | 60.1 | 60.8 | 61.4 | 61.4 | 28 |
| PIQA | 80.8 | 82 | 81.7 | 81.5 | 81.5 | 65.3 |
| Arc Challenge | 56.6 | 55.1 | 56.8 | 57.4 | 57.4 | 33.2 |
| Winogrande | 73.2 | 72.3 | 73.2 | 74.1 | 74.1 | 57 |
* **MMLU**:Evaluates general knowledge across 57 subjects including science, humanities, engineering, and more. Shows model's ability to handle diverse academic topics.
* **PIQA**: Evaluates physical commonsense reasoning through questions about everyday physical interactions. Shows model's understanding of real-world physics concepts.
* **Arc Challenge**: Evaluates grade-school level multiple-choice questions requiring reasoning. Shows model's ability to solve complex reasoning tasks.
* **Winogrande**: Evaluates commonsense reasoning through sentence completion tasks. Shows model's capability to understand context and resolve ambiguity.
### Latency benchmarks
__100 input/300 output; tok/s:__
| GPU/Model | S | M | L | XL | Original | W8A8, int8 |
|-----------|-----|---|---|----|----------|------------|
| H100 | 189 | 166 | 148 | 134 | 49 | 192 |
| L40s | 79 | 68 | 59 | 47 | 38 | 82 |
## Links
* __Platform__: [app.thestage.ai](app.thestage.ai)
<!-- * __Elastic models Github__: [app.thestage.ai](app.thestage.ai) -->
* __Subscribe for updates__: [TheStageAI X](https://x.com/TheStageAI)
* __Contact email__: contact@thestage.ai |