TomDubois12 commited on
Commit
fa87059
·
verified ·
1 Parent(s): b6c9eb8

Initial commit of the fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4224
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-distilroberta-v1
10
+ widget:
11
+ - source_sentence: Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes,
12
+ Graphene, and Metallic Nanostructures
13
+ sentences:
14
+ - We describe the synthesis of bilayer graphene thin films deposited on insulating
15
+ silicon carbide and report the characterization of their electronic band structure
16
+ using angle-resolved photoemission. By selectively adjusting the carrier concentration
17
+ in each layer, changes in the Coulomb potential led to control of the gap between
18
+ valence and conduction bands. This control over the band structure suggests the
19
+ potential application of bilayer graphene to switching functions in atomic-scale
20
+ electronic devices.
21
+ - We have investigated pressure-induced Raman peak shifts for various carbon nanostructures
22
+ with distinct differences in the degree of structural order. The high-frequency
23
+ tangential vibrational modes of the hollow nanostructures, as well as those of
24
+ graphite crystals and a macroscopic carbon fiber used as reference materials,
25
+ were observed to shift to higher wave numbers. The hollow nanostructures and the
26
+ carbon fiber displayed two distinct pressure regimes with transition pressures
27
+ between 0.75 and 2.2 GPa, whereas the graphite crystals showed a linear pressure
28
+ dependence up to hydrostatic pressures of 5 GPa. The observed peak shifts were
29
+ reversible for all hollow nanostructures and graphite. Although the pressure-induced
30
+ Raman peak shift in the low pressure regime could be used to identify the elastic
31
+ properties of the macroscopic carbon fiber, a theoretical model shows that the
32
+ observed deviations in the pressure coefficients of the hollow nanostructures
33
+ in this regime can be explained entirely on the basis of geometric effects. The
34
+ close match of all Raman peak shifts in the high pressure regime indicates a reversible
35
+ flattening of the nanostructures at the transition point.
36
+ - Among the different graphene synthesis methods, chemical vapor deposition of graphene
37
+ on low cost copper foil shows great promise for large scale applications. Here,
38
+ we present growth experiments to obtain high quality graphene and its clean transfer
39
+ onto any substrates. Bilayer-free monolayer graphene was obtained by a careful
40
+ pre-annealing step and by optimizing the H2 flow during growth. The as-grown graphene
41
+ was transferred using an improved wet chemical graphene transfer process. Some
42
+ major flaws in the conventional wet chemical, polymethyl methacrylate (PMMA) assisted,
43
+ graphene transfer process are addressed. The transferred graphene on arbitrary
44
+ substrates was found to be free of metallic contaminants, defects (cracks, holes
45
+ or folds caused by water trapped beneath graphene) and PMMA residues. The high
46
+ quality of the transferred graphene was further evidenced by angle resolved photoelectron
47
+ spectroscopy studies, for which the linear dependency of the electronic band structure
48
+ characteristic of graphene was measured at the Dirac point. This is the first
49
+ Dirac cone observation on the CVD grown graphene transferred on some 3D bulk substrate.
50
+ - source_sentence: 'Electronic structure, energetics and geometric structure of carbon
51
+ nanotubes: A density-functional study'
52
+ sentences:
53
+ - Few-layer graphene (FLG) samples prepared by two methods (chemical vapor deposition
54
+ (CVD) followed by transfer onto SiO2/Si substrate and mechanical exfoliation)
55
+ are characterized by combined optical contrast and micro-Raman mapping experiments.
56
+ We examine the behavior of the integrated intensity ratio of the 2D and G bands
57
+ (A2D/AG) and of the 2D band width (Γ2D) as a function of the number of layers
58
+ (N). For our mechanically exfoliated FLG, A2D/AG decreases and Γ2D increases with
59
+ N as expected for commensurately stacked FLG. For CVD FLG, both similar and opposite
60
+ behaviors are observed and are ascribed to different stacking orders. For small
61
+ (respectively, large) relative rotation angle between consecutive layers (θ),
62
+ the values of the A2D/AG ratio is smaller (respectively, larger) and the 2D band
63
+ is broader (respectively, narrower) than for single-layer graphene. Moreover,
64
+ the A2D/AG ratio decreases (respectively, increases) and, conversely, Γ2D increases
65
+ (respectively, decreases) as a function of N for small (respectively, large) θ.
66
+ An intermediate behavior has also been found and is interpreted as the presence
67
+ of both small and large θ within the studied area. These results confirm that
68
+ neither A2D/AG nor Γ2D are definitive criteria to identify single-layer graphene,
69
+ or to count N in FLG.
70
+ - We present Raman spectra of epitaxial graphene layers grown on 6 root 3x6 root
71
+ 3 reconstructed silicon carbide surfaces during annealing at elevated temperature.
72
+ In contrast to exfoliated graphene a significant phonon hardening is observed.
73
+ We ascribe that phonon hardening to a minor part to the known electron transfer
74
+ from the substrate to the epitaxial layer, and mainly to mechanical strain that
75
+ builds up when the sample is cooled down after annealing. Due to the larger thermal
76
+ expansion coefficient of silicon carbide compared to the in-plane expansion coefficient
77
+ of graphite this strain is compressive at room temperature. (C) 2008 American
78
+ Institute of Physics.
79
+ - Based on the local density approximation (LDA) in the framework of the density-functional
80
+ theory, we study the details of electronic structure, energetics and geometric
81
+ structure of the chiral carbon nanotubes. For the electronic structure, we study
82
+ all the chiral nanotubes with the diameters between 0.8 and 2.0 nm (154 nanotubes).
83
+ This LDA result should give the important database to be compared with the experimental
84
+ studies in the future. We plot the peak-to-peak energy separations of the density
85
+ of states (DOS) as a function of the nanotube diameter (D). For the semiconducting
86
+ nanotubes, we find the peak-to-peak separations can be classified into two types
87
+ according to the chirality. This chirality dependence of the LDA result is opposite
88
+ to that of the simple π tight-binding result. We also perform the geometry optimization
89
+ of chiral carbon nanotubes with different chiral-angle series. From the total
90
+ energy as a function of D, it is found that chiral nanotubes are less stable than
91
+ zigzag nanotubes. We also find that the distribution of bond lengths depends on
92
+ the chirality.
93
+ - source_sentence: Resonant Raman spectra of graphene with point defects
94
+ sentences:
95
+ - Manganese oxide catalysts were synthesized by direct reaction between manganese
96
+ acetate and permanganate ions, under acidic and reflux conditions. Parameters
97
+ such as pH (2.0–4.5) and template cation (Na+, K+ and Cs+) were studied. A pure
98
+ cryptomelane-type manganese oxide was synthesized under specific conditions, and
99
+ it was found that the template cation plays an important role on the formation
100
+ of this kind of structure. Cryptomelane was found to be a very active oxidation
101
+ catalyst, converting ethyl acetate into CO2 at low temperatures (220 °C). This
102
+ catalyst is very stable at least during 90 h of reaction and its performance is
103
+ not significantly affected by the presence of water vapour or CO2 in the feed
104
+ stream. The catalyst performance can be improved by the presence of small amounts
105
+ of Mn3O4.
106
+ - A dynamically stretchable solid state supercapacitor using graphene woven fabric
107
+ (GWF) as electrode materials is designed and evaluated. The electrode is developed
108
+ after GWF film is transferred onto a pre-stretched polymer substrate. Polyaniline
109
+ is deposited covering the GWF film through in-situ electropolymerization to improve
110
+ the electrochemical properties of the electrode. The supercapacitor is assembled
111
+ in sandwich structure and packaged in polymer and its electrochemical performance
112
+ is investigated under both static and dynamic stretching modes. The stretchable
113
+ supercapacitors possess excellent static and dynamic stretchability. The dynamic
114
+ strain can be up to 30% with excellent galvanic stability even under high strain
115
+ rates (up to 60%/s).
116
+ - Heterogeneous electron transfer rate constants of a series of chemical systems
117
+ are estimated using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy
118
+ (EIS), and critically compared to one another. Using aqueous, quasi-reversible
119
+ redox systems, and carbon screen-printed electrodes, this work has been able to
120
+ quantify rate constants using both techniques and have proved that the two methods
121
+ sometimes result in measured rate constants that differ by as much as one order
122
+ of magnitude. The method has been converted to estimate k0 values for irreversible
123
+ electrochemical systems such as ascorbic acid and norepinephrine, yielding reasonable
124
+ values for the electron transfer of their respective oxidation reactions. Such
125
+ electrochemically irreversible cases are compared to data obtained via digital
126
+ simulations. The work is limited to finite concentration ranges of electroactive
127
+ species undergoing simple electron processes (‘E’ type reactions). The manuscript
128
+ provides the field with a simple and effective way estimating electron transfer
129
+ rate constants for irreversible electrochemical systems without using digital
130
+ software packages, something which is not possible using either Nicholson or Laviron
131
+ methods.
132
+ - source_sentence: Band Structure of graphite
133
+ sentences:
134
+ - Rapid progress in identifying biomarkers that are hallmarks of disease has increased
135
+ demand for high-performance detection technologies. Implementation of electrochemical
136
+ methods in clinical analysis may provide an effective answer to the growing need
137
+ for rapid, specific, inexpensive, and fully automated means of biomarker analysis.
138
+ This Review summarizes advances from the past 5 years in the development of electrochemical
139
+ sensors for clinically relevant biomolecules, including small molecules, nucleic
140
+ acids, and proteins. Various sensing strategies are assessed according to their
141
+ potential for reaching relevant limits of sensitivity, specificity, and degrees
142
+ of multiplexing. Furthermore, we address the remaining challenges and opportunities
143
+ to integrate electrochemical sensing platforms into point-of-care solutions.
144
+ - 'The structure and the electrical, mechanical and optical properties of few-layer
145
+ graphene (FLG) synthesized by chemical vapor deposition (CVD) on a Ni-coated substrate
146
+ were studied. Atomic resolution transmission electron microscope (TEM) images
147
+ show highly crystalline single-layer parts of the sample changing to multi-layer
148
+ domains where crystal boundaries are connected by chemical bonds. This suggests
149
+ two different growth mechanisms. CVD and carbon segregation participate in the
150
+ growth process and are responsible for the different structural formations found.
151
+ Measurements of the electrical and mechanical properties on the centimeter scale
152
+ provide evidence of a large scale structural continuity: (1) in the temperature
153
+ dependence of the electrical conductivity, a non-zero value near 0 K indicates
154
+ the metallic character of electronic transport; (2) Young''s modulus of a pristine
155
+ polycarbonate film (1.37 GPa) improves significantly when covered with FLG (1.85
156
+ GPa). The latter indicates an extraordinary Young modulus value of the FLG-coating
157
+ of TPa orders of magnitude. Raman and optical spectroscopy support the previous
158
+ conclusions. The sample can be used as a flexible and transparent electrode and
159
+ is suitable for use as special membranes to detect and study individual molecules
160
+ in high-resolution TEM.'
161
+ - The site-dependent and spontaneous functionalization of 4-bromobenzene diazonium
162
+ tetralluoroborate (4-BBDT) and its doping effect on a mechanically exfoliated
163
+ graphene (MEG) were investigated. The spatially resolved Raman spectra obtained
164
+ from both edge and basal region of MEG revealed that 4-BBDT molecules were noncovalently
165
+ functionalized on the basal region of MEG, while they were covalently bonded to
166
+ the edge of MEG. The chemical doping effect induced by noncovalently functionalized
167
+ 4-BBDT molecules on a basal plane region of MEG was successfully explicated by
168
+ Raman spectroscopy. The position of Fermi level of MEG and the type of doping
169
+ charge carrier induced by the noncovalently adsorbed 4-BBDT molecules were determined
170
+ from systematic G band and 2D band changes. The successful spectroscopic elucidation
171
+ of the different bonding characters of 4-BBDT depending on the site of graphene
172
+ is beneficial for the fundamental studies about the charge transfer phenomena
173
+ of graphene as well as for the potential applications, such as electronic devices,
174
+ hybridized composite structures, etc.
175
+ - source_sentence: Panorama de l’existant sur les capteurs et analyseurs en ligne
176
+ pour la mesure des parametres physico-chimiques dans l’eau
177
+ sentences:
178
+ - 'Le travail de compilation des différents capteurs et analyseurs a été réalisé
179
+ à partir de différentes sources d''information comme l''annuaire du Guide de l''eau,
180
+ les sites web des sociétés et les salons professionnels. 71 fabricants ont ainsi
181
+ été recensés. Un classement a été effectué en considérant: les sondes in situ
182
+ et les capteurs (1 à 3 paramètres et 4 paramètres et plus), les analyseurs en
183
+ ligne (avec et sans réactifs, in situ) et les appareils portables. Des retours
184
+ d''expériences sur le fonctionnement des stations de mesure en continu ont été
185
+ réalisés pour quatre types d''eau (les cours d''eau, les eaux souterraines, les
186
+ eaux de rejets et les eaux marines) à travers des entretiens téléphoniques avec
187
+ les gestionnaires des stations de mesure en France et via la littérature pour
188
+ les stations situées en Europe. Il en ressort que la configuration de la grande
189
+ majorité des stations est basée sur un pompage de l''eau dans un local technique
190
+ par rapport aux stations autonomes in situ. Les paramètres qui sont le plus souvent
191
+ mesurés sont le pH, la conductivité, l''oxygène dissous, la température, la turbidité,
192
+ les nutriments (ammonium, nitrates, phosphates) et la matière organique (carbone
193
+ organique, absorbance spécifique à 254 nm). En fonction des besoins, les micropolluants
194
+ (notamment métaux, hydrocarbures et HAP), la chlorophylle et les cyanobactéries
195
+ ainsi que la toxicité sont occasionnellement mesurés. D''une manière générale,
196
+ les capteurs et analyseurs sont jugés robustes et fiables. Certaines difficultés
197
+ ont pu être mises en évidence, par exemple les dérives pour les capteurs mesurant
198
+ l''ammonium. La maintenance associée aux stations de mesure peut être très importante
199
+ en termes de temps passé et de cout des réactifs. Des études en amont ont souvent
200
+ été engagées pour vérifier la fiabilité des résultats obtenus, notamment à travers
201
+ la comparaison avec des mesures de contrôle et des prélèvements suivis d''analyses
202
+ en laboratoire. Enfin, certains gestionnaires ont mis en place des contrôles qualité
203
+ rigoureux et fréquents, ceci afin de s''assurer du bon fonctionnement et de la
204
+ stabilité des capteurs dans le temps.'
205
+ - Carbon nanotubes have attracted considerable interest for their unique electronic
206
+ properties. They are fascinating candidates for fundamental studies of one dimensional
207
+ materials as well as for future molecular electronics applications. The molecular
208
+ orbitals of nanotubes are of particular importance as they govern the transport
209
+ properties and the chemical reactivity of the system. Here, we show for the first
210
+ time a complete experimental investigation of molecular orbitals of single wall
211
+ carbon nanotubes using atomically resolved scanning tunneling spectroscopy. Local
212
+ conductance measurements show spectacular carbon-carbon bond asymmetry at the
213
+ Van Hove singularities for both semiconducting and metallic tubes, demonstrating
214
+ the symmetry breaking of molecular orbitals in nanotubes. Whatever the tube, only
215
+ two types of complementary orbitals are alternatively observed. An analytical
216
+ tight-binding model describing the interference patterns of π orbitals confirmed
217
+ by ab initio calculations, perfectly reproduces the experimental results.
218
+ - Bilayer graphene is an intriguing material in that its electronic structure can
219
+ be altered by changing the stacking order or the relative twist angle, yielding
220
+ a new class of low-dimensional carbon system. Twisted bilayer graphene can be
221
+ obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD)
222
+ on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one
223
+ atop the other, the latter of which suffers from interlayer contamination. Existing
224
+ synthesis protocols, however, usually result in graphene with polycrystalline
225
+ structures. The present study investigates bilayer graphene grown by ambient pressure
226
+ CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows
227
+ the constituent layers to form single hexagonal crystals. New Raman active modes
228
+ are shown to result from the twist, with the angle determined by transmission
229
+ electron microscopy. The successful growth of single-crystal bilayer graphene
230
+ provides an attractive jumping-off point for systematic studies of interlayer
231
+ coupling in misoriented few-layer graphene systems with well-defined geometry.
232
+ pipeline_tag: sentence-similarity
233
+ library_name: sentence-transformers
234
+ ---
235
+
236
+ # SentenceTransformer based on sentence-transformers/all-distilroberta-v1
237
+
238
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
239
+
240
+ ## Model Details
241
+
242
+ ### Model Description
243
+ - **Model Type:** Sentence Transformer
244
+ - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 8d88b92a34345fd6a139aa47768c9881720006ce -->
245
+ - **Maximum Sequence Length:** 512 tokens
246
+ - **Output Dimensionality:** 768 tokens
247
+ - **Similarity Function:** Cosine Similarity
248
+ <!-- - **Training Dataset:** Unknown -->
249
+ <!-- - **Language:** Unknown -->
250
+ <!-- - **License:** Unknown -->
251
+
252
+ ### Model Sources
253
+
254
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
255
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
256
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
257
+
258
+ ### Full Model Architecture
259
+
260
+ ```
261
+ SentenceTransformer(
262
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
263
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
264
+ (2): Normalize()
265
+ )
266
+ ```
267
+
268
+ ## Usage
269
+
270
+ ### Direct Usage (Sentence Transformers)
271
+
272
+ First install the Sentence Transformers library:
273
+
274
+ ```bash
275
+ pip install -U sentence-transformers
276
+ ```
277
+
278
+ Then you can load this model and run inference.
279
+ ```python
280
+ from sentence_transformers import SentenceTransformer
281
+
282
+ # Download from the 🤗 Hub
283
+ model = SentenceTransformer("TomDubois12/fine-tuned-model")
284
+ # Run inference
285
+ sentences = [
286
+ 'Panorama de l’existant sur les capteurs et analyseurs en ligne pour la mesure des parametres physico-chimiques dans l’eau',
287
+ "Le travail de compilation des différents capteurs et analyseurs a été réalisé à partir de différentes sources d'information comme l'annuaire du Guide de l'eau, les sites web des sociétés et les salons professionnels. 71 fabricants ont ainsi été recensés. Un classement a été effectué en considérant: les sondes in situ et les capteurs (1 à 3 paramètres et 4 paramètres et plus), les analyseurs en ligne (avec et sans réactifs, in situ) et les appareils portables. Des retours d'expériences sur le fonctionnement des stations de mesure en continu ont été réalisés pour quatre types d'eau (les cours d'eau, les eaux souterraines, les eaux de rejets et les eaux marines) à travers des entretiens téléphoniques avec les gestionnaires des stations de mesure en France et via la littérature pour les stations situées en Europe. Il en ressort que la configuration de la grande majorité des stations est basée sur un pompage de l'eau dans un local technique par rapport aux stations autonomes in situ. Les paramètres qui sont le plus souvent mesurés sont le pH, la conductivité, l'oxygène dissous, la température, la turbidité, les nutriments (ammonium, nitrates, phosphates) et la matière organique (carbone organique, absorbance spécifique à 254 nm). En fonction des besoins, les micropolluants (notamment métaux, hydrocarbures et HAP), la chlorophylle et les cyanobactéries ainsi que la toxicité sont occasionnellement mesurés. D'une manière générale, les capteurs et analyseurs sont jugés robustes et fiables. Certaines difficultés ont pu être mises en évidence, par exemple les dérives pour les capteurs mesurant l'ammonium. La maintenance associée aux stations de mesure peut être très importante en termes de temps passé et de cout des réactifs. Des études en amont ont souvent été engagées pour vérifier la fiabilité des résultats obtenus, notamment à travers la comparaison avec des mesures de contrôle et des prélèvements suivis d'analyses en laboratoire. Enfin, certains gestionnaires ont mis en place des contrôles qualité rigoureux et fréquents, ceci afin de s'assurer du bon fonctionnement et de la stabilité des capteurs dans le temps.",
288
+ 'Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.',
289
+ ]
290
+ embeddings = model.encode(sentences)
291
+ print(embeddings.shape)
292
+ # [3, 768]
293
+
294
+ # Get the similarity scores for the embeddings
295
+ similarities = model.similarity(embeddings, embeddings)
296
+ print(similarities.shape)
297
+ # [3, 3]
298
+ ```
299
+
300
+ <!--
301
+ ### Direct Usage (Transformers)
302
+
303
+ <details><summary>Click to see the direct usage in Transformers</summary>
304
+
305
+ </details>
306
+ -->
307
+
308
+ <!--
309
+ ### Downstream Usage (Sentence Transformers)
310
+
311
+ You can finetune this model on your own dataset.
312
+
313
+ <details><summary>Click to expand</summary>
314
+
315
+ </details>
316
+ -->
317
+
318
+ <!--
319
+ ### Out-of-Scope Use
320
+
321
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
322
+ -->
323
+
324
+ <!--
325
+ ## Bias, Risks and Limitations
326
+
327
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
328
+ -->
329
+
330
+ <!--
331
+ ### Recommendations
332
+
333
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
334
+ -->
335
+
336
+ ## Training Details
337
+
338
+ ### Training Dataset
339
+
340
+ #### Unnamed Dataset
341
+
342
+
343
+ * Size: 4,224 training samples
344
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
345
+ * Approximate statistics based on the first 1000 samples:
346
+ | | sentence_0 | sentence_1 | label |
347
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
348
+ | type | string | string | int |
349
+ | details | <ul><li>min: 6 tokens</li><li>mean: 21.55 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 177.38 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>0: ~67.00%</li><li>1: ~33.00%</li></ul> |
350
+ * Samples:
351
+ | sentence_0 | sentence_1 | label |
352
+ |:---------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
353
+ | <code>High-Pressure Elastic Properties of Solid Argon to 70 GPa</code> | <code>The acoustic velocities, adiabatic elastic constants, bulk modulus, elastic anisotropy, Cauchy violation, and density in an ideal solid argon (Ar) have been determined at high pressures up to 70 GPa in a diamond anvil cell by making new approaches of Brillouin spectroscopy. These results place the first complete study for elastic properties of dense Ar and provide an improved basis for making the theoretical calculations of rare-gas solids over a wide range of compression.</code> | <code>1</code> |
354
+ | <code>Direct Voltammetric Detection of DNA and pH Sensing on Epitaxial Graphene: An Insight into the Role of Oxygenated Defects</code> | <code>In this paper, we carried out detailed electrochemical studies of epitaxial graphene (EG) using inner-sphere and outer-sphere redox mediators. The EG sample was anodized systematically to investigate the effect of edge plane defects on the heterogeneous charge transfer kinetics and capacitive noise. We found that anodized EG, consisting of oxygen-related defects, is a superior biosensing platform for the detection of nucleic acids, uric acids (UA), dopamine (DA), and ascorbic acids (AA). Mixtures of nucleic acids (A, T, C, G) or biomolecules (AA, UA, DA) can be resolved as individual peaks using differential pulse voltammetry. In fact, an anodized EG voltammetric sensor can realize the simultaneous detection of all four DNA bases in double stranded DNA (dsDNA) without a prehydrolysis step, and it can also differentiate single stranded DNA from dsDNA. Our results show that graphene with high edge plane defects, as opposed to pristine graphene, is the choice platform in high resolution electrochemical sensing.</code> | <code>1</code> |
355
+ | <code>Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite</code> | <code>We present a comprehensive study of the chiral-index assignment of carbon nanotubes in aqueous suspensions by resonant Raman scattering of the radial breathing mode. We determine the energies of the first optical transition in metallic tubes and of the second optical transition in semiconducting tubes for more than 50 chiral indices. The assignment is unique and does not depend on empirical parameters. The systematics of the so-called branches in the Kataura plot are discussed; many properties of the tubes are similar for members of the same branch. We show how the radial breathing modes observed in a single Raman spectrum can be easily assigned based on these systematics. In addition, empirical fits provide the energies and radial breathing modes for all metallic and semiconducting nanotubes with diameters between 0.6 and 1.5 nm. We discuss the relation between the frequency of the radial breathing mode and tube diameter. Finally, from the Raman intensities we obtain information on the electron-phonon coupling.</code> | <code>0</code> |
356
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
357
+ ```json
358
+ {
359
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
360
+ }
361
+ ```
362
+
363
+ ### Training Hyperparameters
364
+ #### Non-Default Hyperparameters
365
+
366
+ - `per_device_train_batch_size`: 16
367
+ - `per_device_eval_batch_size`: 16
368
+ - `multi_dataset_batch_sampler`: round_robin
369
+
370
+ #### All Hyperparameters
371
+ <details><summary>Click to expand</summary>
372
+
373
+ - `overwrite_output_dir`: False
374
+ - `do_predict`: False
375
+ - `eval_strategy`: no
376
+ - `prediction_loss_only`: True
377
+ - `per_device_train_batch_size`: 16
378
+ - `per_device_eval_batch_size`: 16
379
+ - `per_gpu_train_batch_size`: None
380
+ - `per_gpu_eval_batch_size`: None
381
+ - `gradient_accumulation_steps`: 1
382
+ - `eval_accumulation_steps`: None
383
+ - `torch_empty_cache_steps`: None
384
+ - `learning_rate`: 5e-05
385
+ - `weight_decay`: 0.0
386
+ - `adam_beta1`: 0.9
387
+ - `adam_beta2`: 0.999
388
+ - `adam_epsilon`: 1e-08
389
+ - `max_grad_norm`: 1
390
+ - `num_train_epochs`: 3
391
+ - `max_steps`: -1
392
+ - `lr_scheduler_type`: linear
393
+ - `lr_scheduler_kwargs`: {}
394
+ - `warmup_ratio`: 0.0
395
+ - `warmup_steps`: 0
396
+ - `log_level`: passive
397
+ - `log_level_replica`: warning
398
+ - `log_on_each_node`: True
399
+ - `logging_nan_inf_filter`: True
400
+ - `save_safetensors`: True
401
+ - `save_on_each_node`: False
402
+ - `save_only_model`: False
403
+ - `restore_callback_states_from_checkpoint`: False
404
+ - `no_cuda`: False
405
+ - `use_cpu`: False
406
+ - `use_mps_device`: False
407
+ - `seed`: 42
408
+ - `data_seed`: None
409
+ - `jit_mode_eval`: False
410
+ - `use_ipex`: False
411
+ - `bf16`: False
412
+ - `fp16`: False
413
+ - `fp16_opt_level`: O1
414
+ - `half_precision_backend`: auto
415
+ - `bf16_full_eval`: False
416
+ - `fp16_full_eval`: False
417
+ - `tf32`: None
418
+ - `local_rank`: 0
419
+ - `ddp_backend`: None
420
+ - `tpu_num_cores`: None
421
+ - `tpu_metrics_debug`: False
422
+ - `debug`: []
423
+ - `dataloader_drop_last`: False
424
+ - `dataloader_num_workers`: 0
425
+ - `dataloader_prefetch_factor`: None
426
+ - `past_index`: -1
427
+ - `disable_tqdm`: False
428
+ - `remove_unused_columns`: True
429
+ - `label_names`: None
430
+ - `load_best_model_at_end`: False
431
+ - `ignore_data_skip`: False
432
+ - `fsdp`: []
433
+ - `fsdp_min_num_params`: 0
434
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
435
+ - `fsdp_transformer_layer_cls_to_wrap`: None
436
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
437
+ - `deepspeed`: None
438
+ - `label_smoothing_factor`: 0.0
439
+ - `optim`: adamw_torch
440
+ - `optim_args`: None
441
+ - `adafactor`: False
442
+ - `group_by_length`: False
443
+ - `length_column_name`: length
444
+ - `ddp_find_unused_parameters`: None
445
+ - `ddp_bucket_cap_mb`: None
446
+ - `ddp_broadcast_buffers`: False
447
+ - `dataloader_pin_memory`: True
448
+ - `dataloader_persistent_workers`: False
449
+ - `skip_memory_metrics`: True
450
+ - `use_legacy_prediction_loop`: False
451
+ - `push_to_hub`: False
452
+ - `resume_from_checkpoint`: None
453
+ - `hub_model_id`: None
454
+ - `hub_strategy`: every_save
455
+ - `hub_private_repo`: False
456
+ - `hub_always_push`: False
457
+ - `gradient_checkpointing`: False
458
+ - `gradient_checkpointing_kwargs`: None
459
+ - `include_inputs_for_metrics`: False
460
+ - `eval_do_concat_batches`: True
461
+ - `fp16_backend`: auto
462
+ - `push_to_hub_model_id`: None
463
+ - `push_to_hub_organization`: None
464
+ - `mp_parameters`:
465
+ - `auto_find_batch_size`: False
466
+ - `full_determinism`: False
467
+ - `torchdynamo`: None
468
+ - `ray_scope`: last
469
+ - `ddp_timeout`: 1800
470
+ - `torch_compile`: False
471
+ - `torch_compile_backend`: None
472
+ - `torch_compile_mode`: None
473
+ - `dispatch_batches`: None
474
+ - `split_batches`: None
475
+ - `include_tokens_per_second`: False
476
+ - `include_num_input_tokens_seen`: False
477
+ - `neftune_noise_alpha`: None
478
+ - `optim_target_modules`: None
479
+ - `batch_eval_metrics`: False
480
+ - `eval_on_start`: False
481
+ - `use_liger_kernel`: False
482
+ - `eval_use_gather_object`: False
483
+ - `batch_sampler`: batch_sampler
484
+ - `multi_dataset_batch_sampler`: round_robin
485
+
486
+ </details>
487
+
488
+ ### Training Logs
489
+ | Epoch | Step | Training Loss |
490
+ |:------:|:----:|:-------------:|
491
+ | 1.8939 | 500 | 0.0778 |
492
+
493
+
494
+ ### Framework Versions
495
+ - Python: 3.12.7
496
+ - Sentence Transformers: 3.1.1
497
+ - Transformers: 4.45.2
498
+ - PyTorch: 2.5.1+cpu
499
+ - Accelerate: 1.1.1
500
+ - Datasets: 3.1.0
501
+ - Tokenizers: 0.20.3
502
+
503
+ ## Citation
504
+
505
+ ### BibTeX
506
+
507
+ #### Sentence Transformers
508
+ ```bibtex
509
+ @inproceedings{reimers-2019-sentence-bert,
510
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
511
+ author = "Reimers, Nils and Gurevych, Iryna",
512
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
513
+ month = "11",
514
+ year = "2019",
515
+ publisher = "Association for Computational Linguistics",
516
+ url = "https://arxiv.org/abs/1908.10084",
517
+ }
518
+ ```
519
+
520
+ <!--
521
+ ## Glossary
522
+
523
+ *Clearly define terms in order to be accessible across audiences.*
524
+ -->
525
+
526
+ <!--
527
+ ## Model Card Authors
528
+
529
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
530
+ -->
531
+
532
+ <!--
533
+ ## Model Card Contact
534
+
535
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
536
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BERT/fine_tuned_model",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.45.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4291b03b85b781b6cc17da36d507746980d81f0bbf65c680ee606346d19b384f
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff