import os import time import h5py import numpy as np import gradio as gr import plotly.graph_objects as go from railnet_model import RailNetSystem os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' os.environ["CUDA_VISIBLE_DEVICES"] = "0" model = RailNetSystem.from_pretrained(".").cuda() model.load_weights(".") def wait_for_stable_file(file_path, timeout=5, check_interval=0.2): start_time = time.time() last_size = -1 while time.time() - start_time < timeout: current_size = os.path.getsize(file_path) if current_size == last_size: return True last_size = current_size time.sleep(check_interval) return False def process_cbct_file(h5_file, save_dir="./output"): if not wait_for_stable_file(h5_file.name): raise RuntimeError("File upload has not been completed or is unstable, please try again.") try: with h5py.File(h5_file.name, "r") as f: if "image" not in f or "label" not in f: raise KeyError("The file is missing ‘image’ or ‘label’ value") image = f["image"][:] label = f["label"][:] except Exception as e: raise RuntimeError(f"Failed to read the .h5 file: {str(e)}") name = os.path.basename(h5_file.name).replace(".h5", "") pred, dice, jc, hd, asd = model(image, label, save_dir, name) return pred, f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}" def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25): downsample_factor = 2 pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor] fig = go.Figure(data=go.Volume( x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]), y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]), z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]), value=pred_ds.flatten(), isomin=0.5, isomax=1.0, opacity=0.1, surface_count=1, colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']], showscale=False )) fig.update_layout( scene=dict( xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False), camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye)) ), margin=dict(l=0, r=0, b=0, t=0) ) return fig def clear_all(): return None, "", None with gr.Blocks() as demo: gr.Markdown("
🦷 Demo of RailNet: A CBCT Tooth Segmentation System
") gr.Markdown("
✅ Steps: Upload a CBCT example file (.h5) → Automatic inference and metrics display → View 3D segmentation result (Mouse drag and scroll wheel zooming)
") gr.Markdown("
") gr.Markdown("
📂 Step 1: Upload the .h5 example file containing both ‘image’ and ‘label’ values
") file_input = gr.File() with gr.Row(): clear_btn = gr.Button("清除", variant="secondary") submit_btn = gr.Button("提交", variant="primary") gr.Markdown("
") gr.Markdown("
📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)
") result_text = gr.Textbox() hidden_pred = gr.State(value=None) gr.Markdown("
") gr.Markdown("
👁️ Step 3: 3D Visualisation
") plot_output = gr.Plot() def handle_upload(h5_file): pred, metrics = process_cbct_file(h5_file) fig = render_plotly_volume(pred) return metrics, pred, fig submit_btn.click( fn=handle_upload, inputs=[file_input], outputs=[result_text, hidden_pred, plot_output] ) def update_view(pred, x_eye, y_eye, z_eye): if pred is None: return gr.update() return render_plotly_volume(pred, x_eye, y_eye, z_eye) clear_btn.click( fn=clear_all, inputs=[], outputs=[file_input, result_text, plot_output] ) demo.launch()