import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using device: {device}") model = AutoModelForCausalLM.from_pretrained( "/Users/mcclainthiel/plasmidgpt-addgene-gpt2", trust_remote_code=True ).to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained( "/Users/mcclainthiel/plasmidgpt-addgene-gpt2", trust_remote_code=True ) start_sequence = 'ATGGCTAGCGAATTCGGCGCGCCT' print(f"Start sequence: {start_sequence}\n") input_ids = tokenizer.encode(start_sequence, return_tensors='pt').to(device) outputs = model.generate( input_ids, max_length=300, num_return_sequences=1, temperature=1.0, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) generated_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Generated sequence:\n{generated_sequence}\n") print(f"Length: {len(generated_sequence)} bp")