from abc import ABCMeta import torch from transformers.pytorch_utils import nn import torch.nn.functional as F from transformers import AlbertModel, AlbertForSequenceClassification, PreTrainedModel from transformers.modeling_outputs import SequenceClassifierOutput from transformers import AlbertConfig from transformers import PretrainedConfig class AlbertLSTMConfig(PretrainedConfig): model_type = "albertLSTMForSequenceClassification" def __init__(self, num_classes=2, embed_dim=768, num_layers=12, hidden_dim_lstm=256, # New parameter for LSTM dropout_rate=0.1, **kwargs): super().__init__(**kwargs) self.num_classes = num_classes self.embed_dim = embed_dim self.num_layers = num_layers self.hidden_dim_lstm = hidden_dim_lstm # Assign LSTM hidden dimension self.dropout_rate = dropout_rate self.id2label = { 0: "fake", 1: "true", } self.label2id = { "fake": 0, "true": 1, } class AlbertLSTMForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): config_class = AlbertLSTMConfig def __init__(self, config): super(AlbertLSTMForSequenceClassification, self).__init__(config) self.num_classes = config.num_classes self.embed_dim = config.embed_dim self.num_layers = config.num_layers self.hidden_dim_lstm = config.hidden_dim_lstm self.dropout = nn.Dropout(config.dropout_rate) self.albert = AlbertModel.from_pretrained('albert-base-v2', output_hidden_states=True, output_attentions=False) print("ALBERT Model Loaded") self.lstm = nn.LSTM(self.embed_dim, self.hidden_dim_lstm, batch_first=True, num_layers=3) # noqa self.fc = nn.Linear(self.hidden_dim_lstm, self.num_classes) def forward(self, input_ids, attention_mask, token_type_ids, labels=None): albert_output = self.albert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) hidden_states = albert_output["hidden_states"] hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze() for layer_i in range(0, self.num_layers)], dim=-1) # noqa hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim) out, _ = self.lstm(hidden_states, None) out = self.dropout(out[:, -1, :]) logits = self.fc(out) loss = None if labels is not None: loss = F.cross_entropy(logits, labels) out = SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=albert_output.hidden_states, attentions=albert_output.attentions, ) return out