File size: 2,958 Bytes
9d7bb26 bdcb38e 9d7bb26 99e0752 9d7bb26 2c9ddda 359523a bdcb38e 9d7bb26 c1b9a7b 9d7bb26 84a195f 9d7bb26 c1b9a7b 9d7bb26 c8356c6 d29815b c8356c6 9d7bb26 146dd97 9d7bb26 bdcb38e 9d7bb26 146dd97 9d7bb26 c1b9a7b 9d7bb26 84a195f 359523a 9d7bb26 c1b9a7b 9d7bb26 c8356c6 d29815b c8356c6 146dd97 c1b9a7b 359523a bdcb38e 99e0752 bdcb38e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
base_model:
- Ultralytics/YOLO11
tags:
- chemistry
---
# Molecule Detection YOLO in MolParser
From paper: "*MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild*" (ICCV2025 Accept)
[Arxiv Paper](https://arxiv.org/abs/2411.11098) | [Huggingface Dataset](https://huggingface.co/datasets/AI4Industry/MolParser-7M) | [OCSR Demo](https://ocsr.dp.tech/)
We provide several [ultralytics YOLO11]((https://github.com/ultralytics/ultralytics)) weights for molecule detection with different size & input resolution.

## 1⃣️ [MolDet-General] General molecule structure detection models
`moldet_yolo11[size]_640_general.pt`
YOLO11 weights trained on 35k human annotated image crops and 100k generated images
* 640x640 input resolution
* support handwritten molecules
* **multiscale input** (inputs can be single/multiple molecular cutouts, reaction or table cutouts, or single-page PDF images)
<span style='color:gray'>Warning: For single-molecule input (used as a classification model), appropriate padding can be added to enhance the performance.</span>
Result in private testing:
| Model Size | mAP50 | mAP50-95 | Speed (T4 TensorRT10) |
| ---- | ----- | -------- | ----- |
| n | 0.9581 | 0.8524 | 1.5 ± 0.0 ms |
| s | 0.9652 | 0.8704 | 2.5 ± 0.1 ms |
| m | 0.9686 | 0.8736 | 4.7 ± 0.1 ms |
| l | **0.9891** | **0.9028** | 6.2 ± 0.1 ms |
usage:
```python
from ultralytics import YOLO
model = YOLO("moldet_yolo11l_640_general.pt")
model.predict("path/to/image.png", save=True, imgsz=640, conf=0.5)
```
## 2⃣️ [MolDet-Doc] PDF molecule structure detection models
`moldet_yolo11[size]_960_doc.pt`
YOLO11 weights trained on 26k human annotated PDF pages (patents, papers, and books)
* 960x960 input resolution
* prefer **single page PDF image** input
* better in small molecule detection
<span style='color:gray'>Warning: It is recommended to use MuPDF to render PDF pages at more than 144dpi.</span>
Result in private testing:
| Model Size | mAP50 | mAP50-95 | Speed (T4 TensorRT10) |
| ---- | ----- | -------- | ----- |
| n | 0.9871 | 0.8732 | 3.1 ± 0.0 ms |
| s | 0.9851 | 0.8824 | 5.5 ± 0.1 ms |
| m | 0.9867 | 0.8917 | 9.9 ± 0.2 ms |
| l | **0.9913** | **0.9011** | 13.1 ± 0.3 ms |
usage:
```python
from ultralytics import YOLO
model = YOLO("moldet_yolo11l_960_doc.pt")
model.predict("path/to/pdf_page_image.png", save=True, imgsz=960, conf=0.5)
```
## 📖 Citation
If you use this model in your work, please cite:
```
@article{fang2024molparser,
title={Molparser: End-to-end visual recognition of molecule structures in the wild},
author={Fang, Xi and Wang, Jiankun and Cai, Xiaochen and Chen, Shangqian and Yang, Shuwen and Tao, Haoyi and Wang, Nan and Yao, Lin and Zhang, Linfeng and Ke, Guolin},
journal={arXiv preprint arXiv:2411.11098},
year={2024}
}
``` |