Upload FRIDA model copy
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1694 -0
- config.json +34 -0
- config_sentence_transformers.json +18 -0
- img.jpg +3 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
img.jpg filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1536,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,1697 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
model-index:
|
| 3 |
+
- name: FRIDA
|
| 4 |
+
results:
|
| 5 |
+
- dataset:
|
| 6 |
+
config: default
|
| 7 |
+
name: MTEB CEDRClassification (default)
|
| 8 |
+
revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4
|
| 9 |
+
split: test
|
| 10 |
+
type: ai-forever/cedr-classification
|
| 11 |
+
metrics:
|
| 12 |
+
- type: accuracy
|
| 13 |
+
value: 64.60148777895856
|
| 14 |
+
- type: f1
|
| 15 |
+
value: 70.36630348039266
|
| 16 |
+
- type: lrap
|
| 17 |
+
value: 92.47290116896953
|
| 18 |
+
- type: main_score
|
| 19 |
+
value: 64.60148777895856
|
| 20 |
+
task:
|
| 21 |
+
type: MultilabelClassification
|
| 22 |
+
- dataset:
|
| 23 |
+
config: default
|
| 24 |
+
name: MTEB GeoreviewClassification (default)
|
| 25 |
+
revision: 3765c0d1de6b7d264bc459433c45e5a75513839c
|
| 26 |
+
split: test
|
| 27 |
+
type: ai-forever/georeview-classification
|
| 28 |
+
metrics:
|
| 29 |
+
- type: accuracy
|
| 30 |
+
value: 57.70996093750001
|
| 31 |
+
- type: f1
|
| 32 |
+
value: 53.18542982057098
|
| 33 |
+
- type: f1_weighted
|
| 34 |
+
value: 53.17663229582108
|
| 35 |
+
- type: main_score
|
| 36 |
+
value: 57.70996093750001
|
| 37 |
+
task:
|
| 38 |
+
type: Classification
|
| 39 |
+
- dataset:
|
| 40 |
+
config: default
|
| 41 |
+
name: MTEB GeoreviewClusteringP2P (default)
|
| 42 |
+
revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec
|
| 43 |
+
split: test
|
| 44 |
+
type: ai-forever/georeview-clustering-p2p
|
| 45 |
+
metrics:
|
| 46 |
+
- type: main_score
|
| 47 |
+
value: 78.25468393043356
|
| 48 |
+
- type: v_measure
|
| 49 |
+
value: 78.25468393043356
|
| 50 |
+
- type: v_measure_std
|
| 51 |
+
value: 0.5094366871364238
|
| 52 |
+
task:
|
| 53 |
+
type: Clustering
|
| 54 |
+
- dataset:
|
| 55 |
+
config: default
|
| 56 |
+
name: MTEB HeadlineClassification (default)
|
| 57 |
+
revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb
|
| 58 |
+
split: test
|
| 59 |
+
type: ai-forever/headline-classification
|
| 60 |
+
metrics:
|
| 61 |
+
- type: accuracy
|
| 62 |
+
value: 89.0185546875
|
| 63 |
+
- type: f1
|
| 64 |
+
value: 88.993933120612
|
| 65 |
+
- type: f1_weighted
|
| 66 |
+
value: 88.99276764225768
|
| 67 |
+
- type: main_score
|
| 68 |
+
value: 89.0185546875
|
| 69 |
+
task:
|
| 70 |
+
type: Classification
|
| 71 |
+
- dataset:
|
| 72 |
+
config: default
|
| 73 |
+
name: MTEB InappropriatenessClassification (default)
|
| 74 |
+
revision: 601651fdc45ef243751676e62dd7a19f491c0285
|
| 75 |
+
split: test
|
| 76 |
+
type: ai-forever/inappropriateness-classification
|
| 77 |
+
metrics:
|
| 78 |
+
- type: accuracy
|
| 79 |
+
value: 78.330078125
|
| 80 |
+
- type: ap
|
| 81 |
+
value: 73.17856750532495
|
| 82 |
+
- type: ap_weighted
|
| 83 |
+
value: 73.17856750532495
|
| 84 |
+
- type: f1
|
| 85 |
+
value: 78.20169867599041
|
| 86 |
+
- type: f1_weighted
|
| 87 |
+
value: 78.20169867599041
|
| 88 |
+
- type: main_score
|
| 89 |
+
value: 78.330078125
|
| 90 |
+
task:
|
| 91 |
+
type: Classification
|
| 92 |
+
- dataset:
|
| 93 |
+
config: default
|
| 94 |
+
name: MTEB KinopoiskClassification (default)
|
| 95 |
+
revision: 5911f26666ac11af46cb9c6849d0dc80a378af24
|
| 96 |
+
split: test
|
| 97 |
+
type: ai-forever/kinopoisk-sentiment-classification
|
| 98 |
+
metrics:
|
| 99 |
+
- type: accuracy
|
| 100 |
+
value: 70.46666666666665
|
| 101 |
+
- type: f1
|
| 102 |
+
value: 65.83951766538878
|
| 103 |
+
- type: f1_weighted
|
| 104 |
+
value: 65.83951766538878
|
| 105 |
+
- type: main_score
|
| 106 |
+
value: 70.46666666666665
|
| 107 |
+
task:
|
| 108 |
+
type: Classification
|
| 109 |
+
- dataset:
|
| 110 |
+
config: ru
|
| 111 |
+
name: MTEB MIRACLReranking (ru)
|
| 112 |
+
revision: 6d1962c527217f8927fca80f890f14f36b2802af
|
| 113 |
+
split: dev
|
| 114 |
+
type: miracl/mmteb-miracl-reranking
|
| 115 |
+
metrics:
|
| 116 |
+
- type: MAP@1(MIRACL)
|
| 117 |
+
value: 39.023
|
| 118 |
+
- type: MAP@10(MIRACL)
|
| 119 |
+
value: 60.208
|
| 120 |
+
- type: MAP@100(MIRACL)
|
| 121 |
+
value: 61.672000000000004
|
| 122 |
+
- type: MAP@1000(MIRACL)
|
| 123 |
+
value: 61.672000000000004
|
| 124 |
+
- type: MAP@20(MIRACL)
|
| 125 |
+
value: 61.30799999999999
|
| 126 |
+
- type: MAP@3(MIRACL)
|
| 127 |
+
value: 53.33
|
| 128 |
+
- type: MAP@5(MIRACL)
|
| 129 |
+
value: 57.289
|
| 130 |
+
- type: NDCG@1(MIRACL)
|
| 131 |
+
value: 63.352
|
| 132 |
+
- type: NDCG@10(MIRACL)
|
| 133 |
+
value: 66.042
|
| 134 |
+
- type: NDCG@100(MIRACL)
|
| 135 |
+
value: 68.702
|
| 136 |
+
- type: NDCG@1000(MIRACL)
|
| 137 |
+
value: 68.702
|
| 138 |
+
- type: NDCG@20(MIRACL)
|
| 139 |
+
value: 67.768
|
| 140 |
+
- type: NDCG@3(MIRACL)
|
| 141 |
+
value: 61.925
|
| 142 |
+
- type: NDCG@5(MIRACL)
|
| 143 |
+
value: 63.327
|
| 144 |
+
- type: P@1(MIRACL)
|
| 145 |
+
value: 63.352
|
| 146 |
+
- type: P@10(MIRACL)
|
| 147 |
+
value: 16.512
|
| 148 |
+
- type: P@100(MIRACL)
|
| 149 |
+
value: 1.9529999999999998
|
| 150 |
+
- type: P@1000(MIRACL)
|
| 151 |
+
value: 0.19499999999999998
|
| 152 |
+
- type: P@20(MIRACL)
|
| 153 |
+
value: 9.13
|
| 154 |
+
- type: P@3(MIRACL)
|
| 155 |
+
value: 37.878
|
| 156 |
+
- type: P@5(MIRACL)
|
| 157 |
+
value: 27.586
|
| 158 |
+
- type: Recall@1(MIRACL)
|
| 159 |
+
value: 39.023
|
| 160 |
+
- type: Recall@10(MIRACL)
|
| 161 |
+
value: 72.35000000000001
|
| 162 |
+
- type: Recall@100(MIRACL)
|
| 163 |
+
value: 79.952
|
| 164 |
+
- type: Recall@1000(MIRACL)
|
| 165 |
+
value: 79.952
|
| 166 |
+
- type: Recall@20(MIRACL)
|
| 167 |
+
value: 76.828
|
| 168 |
+
- type: Recall@3(MIRACL)
|
| 169 |
+
value: 57.769999999999996
|
| 170 |
+
- type: Recall@5(MIRACL)
|
| 171 |
+
value: 64.91900000000001
|
| 172 |
+
- type: main_score
|
| 173 |
+
value: 66.042
|
| 174 |
+
- type: nAUC_MAP@1000_diff1(MIRACL)
|
| 175 |
+
value: 27.150388833033052
|
| 176 |
+
- type: nAUC_MAP@1000_max(MIRACL)
|
| 177 |
+
value: 55.15672274267081
|
| 178 |
+
- type: nAUC_MAP@1000_std(MIRACL)
|
| 179 |
+
value: 30.088939934575553
|
| 180 |
+
- type: nAUC_MAP@100_diff1(MIRACL)
|
| 181 |
+
value: 27.150388833033052
|
| 182 |
+
- type: nAUC_MAP@100_max(MIRACL)
|
| 183 |
+
value: 55.15672274267081
|
| 184 |
+
- type: nAUC_MAP@100_std(MIRACL)
|
| 185 |
+
value: 30.088939934575553
|
| 186 |
+
- type: nAUC_MAP@10_diff1(MIRACL)
|
| 187 |
+
value: 27.853691773641742
|
| 188 |
+
- type: nAUC_MAP@10_max(MIRACL)
|
| 189 |
+
value: 52.89390350055654
|
| 190 |
+
- type: nAUC_MAP@10_std(MIRACL)
|
| 191 |
+
value: 28.08732516551691
|
| 192 |
+
- type: nAUC_MAP@1_diff1(MIRACL)
|
| 193 |
+
value: 43.23179150244192
|
| 194 |
+
- type: nAUC_MAP@1_max(MIRACL)
|
| 195 |
+
value: 29.923943954188864
|
| 196 |
+
- type: nAUC_MAP@1_std(MIRACL)
|
| 197 |
+
value: 7.447084370195121
|
| 198 |
+
- type: nAUC_MAP@20_diff1(MIRACL)
|
| 199 |
+
value: 27.328384072311675
|
| 200 |
+
- type: nAUC_MAP@20_max(MIRACL)
|
| 201 |
+
value: 54.60286379835721
|
| 202 |
+
- type: nAUC_MAP@20_std(MIRACL)
|
| 203 |
+
value: 29.8084128980043
|
| 204 |
+
- type: nAUC_MAP@3_diff1(MIRACL)
|
| 205 |
+
value: 31.244971536944554
|
| 206 |
+
- type: nAUC_MAP@3_max(MIRACL)
|
| 207 |
+
value: 43.63984692803854
|
| 208 |
+
- type: nAUC_MAP@3_std(MIRACL)
|
| 209 |
+
value: 18.609234683765887
|
| 210 |
+
- type: nAUC_MAP@5_diff1(MIRACL)
|
| 211 |
+
value: 29.088760492638286
|
| 212 |
+
- type: nAUC_MAP@5_max(MIRACL)
|
| 213 |
+
value: 48.30474364461509
|
| 214 |
+
- type: nAUC_MAP@5_std(MIRACL)
|
| 215 |
+
value: 23.817514353844224
|
| 216 |
+
- type: nAUC_NDCG@1000_diff1(MIRACL)
|
| 217 |
+
value: 23.12754356408408
|
| 218 |
+
- type: nAUC_NDCG@1000_max(MIRACL)
|
| 219 |
+
value: 64.24894553363303
|
| 220 |
+
- type: nAUC_NDCG@1000_std(MIRACL)
|
| 221 |
+
value: 38.19318050598967
|
| 222 |
+
- type: nAUC_NDCG@100_diff1(MIRACL)
|
| 223 |
+
value: 23.12754356408408
|
| 224 |
+
- type: nAUC_NDCG@100_max(MIRACL)
|
| 225 |
+
value: 64.24894553363303
|
| 226 |
+
- type: nAUC_NDCG@100_std(MIRACL)
|
| 227 |
+
value: 38.19318050598967
|
| 228 |
+
- type: nAUC_NDCG@10_diff1(MIRACL)
|
| 229 |
+
value: 24.779856373697275
|
| 230 |
+
- type: nAUC_NDCG@10_max(MIRACL)
|
| 231 |
+
value: 60.4054459738118
|
| 232 |
+
- type: nAUC_NDCG@10_std(MIRACL)
|
| 233 |
+
value: 35.148950441182784
|
| 234 |
+
- type: nAUC_NDCG@1_diff1(MIRACL)
|
| 235 |
+
value: 35.605865569438556
|
| 236 |
+
- type: nAUC_NDCG@1_max(MIRACL)
|
| 237 |
+
value: 65.77787399715454
|
| 238 |
+
- type: nAUC_NDCG@1_std(MIRACL)
|
| 239 |
+
value: 34.34726892885082
|
| 240 |
+
- type: nAUC_NDCG@20_diff1(MIRACL)
|
| 241 |
+
value: 23.71231783125691
|
| 242 |
+
- type: nAUC_NDCG@20_max(MIRACL)
|
| 243 |
+
value: 62.89676599488004
|
| 244 |
+
- type: nAUC_NDCG@20_std(MIRACL)
|
| 245 |
+
value: 37.697052941884316
|
| 246 |
+
- type: nAUC_NDCG@3_diff1(MIRACL)
|
| 247 |
+
value: 26.109027741640865
|
| 248 |
+
- type: nAUC_NDCG@3_max(MIRACL)
|
| 249 |
+
value: 56.22356793638693
|
| 250 |
+
- type: nAUC_NDCG@3_std(MIRACL)
|
| 251 |
+
value: 29.9437568508688
|
| 252 |
+
- type: nAUC_NDCG@5_diff1(MIRACL)
|
| 253 |
+
value: 25.98644715327336
|
| 254 |
+
- type: nAUC_NDCG@5_max(MIRACL)
|
| 255 |
+
value: 56.25032008404774
|
| 256 |
+
- type: nAUC_NDCG@5_std(MIRACL)
|
| 257 |
+
value: 31.581899860862578
|
| 258 |
+
- type: nAUC_P@1000_diff1(MIRACL)
|
| 259 |
+
value: -18.29912787064644
|
| 260 |
+
- type: nAUC_P@1000_max(MIRACL)
|
| 261 |
+
value: 31.811344878776087
|
| 262 |
+
- type: nAUC_P@1000_std(MIRACL)
|
| 263 |
+
value: 30.163820183304914
|
| 264 |
+
- type: nAUC_P@100_diff1(MIRACL)
|
| 265 |
+
value: -18.299127870646405
|
| 266 |
+
- type: nAUC_P@100_max(MIRACL)
|
| 267 |
+
value: 31.811344878776133
|
| 268 |
+
- type: nAUC_P@100_std(MIRACL)
|
| 269 |
+
value: 30.163820183304956
|
| 270 |
+
- type: nAUC_P@10_diff1(MIRACL)
|
| 271 |
+
value: -15.96416268531149
|
| 272 |
+
- type: nAUC_P@10_max(MIRACL)
|
| 273 |
+
value: 36.989578896466526
|
| 274 |
+
- type: nAUC_P@10_std(MIRACL)
|
| 275 |
+
value: 34.54507111688143
|
| 276 |
+
- type: nAUC_P@1_diff1(MIRACL)
|
| 277 |
+
value: 35.605865569438556
|
| 278 |
+
- type: nAUC_P@1_max(MIRACL)
|
| 279 |
+
value: 65.77787399715454
|
| 280 |
+
- type: nAUC_P@1_std(MIRACL)
|
| 281 |
+
value: 34.34726892885082
|
| 282 |
+
- type: nAUC_P@20_diff1(MIRACL)
|
| 283 |
+
value: -17.443963421383287
|
| 284 |
+
- type: nAUC_P@20_max(MIRACL)
|
| 285 |
+
value: 34.309618168778385
|
| 286 |
+
- type: nAUC_P@20_std(MIRACL)
|
| 287 |
+
value: 33.38820956485373
|
| 288 |
+
- type: nAUC_P@3_diff1(MIRACL)
|
| 289 |
+
value: -8.533621861815652
|
| 290 |
+
- type: nAUC_P@3_max(MIRACL)
|
| 291 |
+
value: 45.90408386776497
|
| 292 |
+
- type: nAUC_P@3_std(MIRACL)
|
| 293 |
+
value: 34.50459351305535
|
| 294 |
+
- type: nAUC_P@5_diff1(MIRACL)
|
| 295 |
+
value: -13.207968899314865
|
| 296 |
+
- type: nAUC_P@5_max(MIRACL)
|
| 297 |
+
value: 40.37718282248973
|
| 298 |
+
- type: nAUC_P@5_std(MIRACL)
|
| 299 |
+
value: 35.601417332196206
|
| 300 |
+
- type: nAUC_Recall@1000_diff1(MIRACL)
|
| 301 |
+
value: 7.907304198177226
|
| 302 |
+
- type: nAUC_Recall@1000_max(MIRACL)
|
| 303 |
+
value: 77.82197832361145
|
| 304 |
+
- type: nAUC_Recall@1000_std(MIRACL)
|
| 305 |
+
value: 52.66957487246724
|
| 306 |
+
- type: nAUC_Recall@100_diff1(MIRACL)
|
| 307 |
+
value: 7.907304198177226
|
| 308 |
+
- type: nAUC_Recall@100_max(MIRACL)
|
| 309 |
+
value: 77.82197832361145
|
| 310 |
+
- type: nAUC_Recall@100_std(MIRACL)
|
| 311 |
+
value: 52.66957487246724
|
| 312 |
+
- type: nAUC_Recall@10_diff1(MIRACL)
|
| 313 |
+
value: 15.498121023488693
|
| 314 |
+
- type: nAUC_Recall@10_max(MIRACL)
|
| 315 |
+
value: 62.24320529338724
|
| 316 |
+
- type: nAUC_Recall@10_std(MIRACL)
|
| 317 |
+
value: 40.60221460946224
|
| 318 |
+
- type: nAUC_Recall@1_diff1(MIRACL)
|
| 319 |
+
value: 43.23179150244192
|
| 320 |
+
- type: nAUC_Recall@1_max(MIRACL)
|
| 321 |
+
value: 29.923943954188864
|
| 322 |
+
- type: nAUC_Recall@1_std(MIRACL)
|
| 323 |
+
value: 7.447084370195121
|
| 324 |
+
- type: nAUC_Recall@20_diff1(MIRACL)
|
| 325 |
+
value: 11.457044176116248
|
| 326 |
+
- type: nAUC_Recall@20_max(MIRACL)
|
| 327 |
+
value: 70.3493054342368
|
| 328 |
+
- type: nAUC_Recall@20_std(MIRACL)
|
| 329 |
+
value: 49.27124296325928
|
| 330 |
+
- type: nAUC_Recall@3_diff1(MIRACL)
|
| 331 |
+
value: 25.12077828977941
|
| 332 |
+
- type: nAUC_Recall@3_max(MIRACL)
|
| 333 |
+
value: 42.903379317937166
|
| 334 |
+
- type: nAUC_Recall@3_std(MIRACL)
|
| 335 |
+
value: 20.324501722161497
|
| 336 |
+
- type: nAUC_Recall@5_diff1(MIRACL)
|
| 337 |
+
value: 20.925701235197977
|
| 338 |
+
- type: nAUC_Recall@5_max(MIRACL)
|
| 339 |
+
value: 49.85323960390812
|
| 340 |
+
- type: nAUC_Recall@5_std(MIRACL)
|
| 341 |
+
value: 29.04484539530469
|
| 342 |
+
task:
|
| 343 |
+
type: Reranking
|
| 344 |
+
- dataset:
|
| 345 |
+
config: ru
|
| 346 |
+
name: MTEB MIRACLRetrieval (ru)
|
| 347 |
+
revision: main
|
| 348 |
+
split: dev
|
| 349 |
+
type: miracl/mmteb-miracl
|
| 350 |
+
metrics:
|
| 351 |
+
- type: main_score
|
| 352 |
+
value: 71.882
|
| 353 |
+
- type: map_at_1
|
| 354 |
+
value: 37.913000000000004
|
| 355 |
+
- type: map_at_10
|
| 356 |
+
value: 62.604000000000006
|
| 357 |
+
- type: map_at_100
|
| 358 |
+
value: 64.925
|
| 359 |
+
- type: map_at_1000
|
| 360 |
+
value: 64.992
|
| 361 |
+
- type: map_at_20
|
| 362 |
+
value: 64.081
|
| 363 |
+
- type: map_at_3
|
| 364 |
+
value: 55.212
|
| 365 |
+
- type: map_at_5
|
| 366 |
+
value: 59.445
|
| 367 |
+
- type: mrr_at_1
|
| 368 |
+
value: 73.24281150159744
|
| 369 |
+
- type: mrr_at_10
|
| 370 |
+
value: 81.65043866321825
|
| 371 |
+
- type: mrr_at_100
|
| 372 |
+
value: 81.85391378818977
|
| 373 |
+
- type: mrr_at_1000
|
| 374 |
+
value: 81.85753390802569
|
| 375 |
+
- type: mrr_at_20
|
| 376 |
+
value: 81.81045606130179
|
| 377 |
+
- type: mrr_at_3
|
| 378 |
+
value: 80.56443024494146
|
| 379 |
+
- type: mrr_at_5
|
| 380 |
+
value: 81.30724174653893
|
| 381 |
+
- type: nauc_map_at_1000_diff1
|
| 382 |
+
value: 26.962150235593356
|
| 383 |
+
- type: nauc_map_at_1000_max
|
| 384 |
+
value: 29.234958037854568
|
| 385 |
+
- type: nauc_map_at_1000_std
|
| 386 |
+
value: -2.4294465103633884
|
| 387 |
+
- type: nauc_map_at_100_diff1
|
| 388 |
+
value: 26.92990252114163
|
| 389 |
+
- type: nauc_map_at_100_max
|
| 390 |
+
value: 29.206328533120118
|
| 391 |
+
- type: nauc_map_at_100_std
|
| 392 |
+
value: -2.437371090941197
|
| 393 |
+
- type: nauc_map_at_10_diff1
|
| 394 |
+
value: 25.758265691179226
|
| 395 |
+
- type: nauc_map_at_10_max
|
| 396 |
+
value: 26.949978490795317
|
| 397 |
+
- type: nauc_map_at_10_std
|
| 398 |
+
value: -5.484961002106038
|
| 399 |
+
- type: nauc_map_at_1_diff1
|
| 400 |
+
value: 34.70849461278043
|
| 401 |
+
- type: nauc_map_at_1_max
|
| 402 |
+
value: 12.778570893623042
|
| 403 |
+
- type: nauc_map_at_1_std
|
| 404 |
+
value: -13.018292652743938
|
| 405 |
+
- type: nauc_map_at_20_diff1
|
| 406 |
+
value: 26.659923008218268
|
| 407 |
+
- type: nauc_map_at_20_max
|
| 408 |
+
value: 28.341440871568185
|
| 409 |
+
- type: nauc_map_at_20_std
|
| 410 |
+
value: -3.614549844913084
|
| 411 |
+
- type: nauc_map_at_3_diff1
|
| 412 |
+
value: 27.197629021438203
|
| 413 |
+
- type: nauc_map_at_3_max
|
| 414 |
+
value: 20.701094874050856
|
| 415 |
+
- type: nauc_map_at_3_std
|
| 416 |
+
value: -12.062992301112041
|
| 417 |
+
- type: nauc_map_at_5_diff1
|
| 418 |
+
value: 25.51793537203295
|
| 419 |
+
- type: nauc_map_at_5_max
|
| 420 |
+
value: 23.80396771243794
|
| 421 |
+
- type: nauc_map_at_5_std
|
| 422 |
+
value: -8.920465695323575
|
| 423 |
+
- type: nauc_mrr_at_1000_diff1
|
| 424 |
+
value: 45.14819989592967
|
| 425 |
+
- type: nauc_mrr_at_1000_max
|
| 426 |
+
value: 53.29202156141053
|
| 427 |
+
- type: nauc_mrr_at_1000_std
|
| 428 |
+
value: 18.037336462510524
|
| 429 |
+
- type: nauc_mrr_at_100_diff1
|
| 430 |
+
value: 45.15287600228451
|
| 431 |
+
- type: nauc_mrr_at_100_max
|
| 432 |
+
value: 53.29979751928615
|
| 433 |
+
- type: nauc_mrr_at_100_std
|
| 434 |
+
value: 18.04996604778386
|
| 435 |
+
- type: nauc_mrr_at_10_diff1
|
| 436 |
+
value: 44.96865105944474
|
| 437 |
+
- type: nauc_mrr_at_10_max
|
| 438 |
+
value: 53.53323465323092
|
| 439 |
+
- type: nauc_mrr_at_10_std
|
| 440 |
+
value: 18.25001344917689
|
| 441 |
+
- type: nauc_mrr_at_1_diff1
|
| 442 |
+
value: 46.16604946873163
|
| 443 |
+
- type: nauc_mrr_at_1_max
|
| 444 |
+
value: 48.573651103547874
|
| 445 |
+
- type: nauc_mrr_at_1_std
|
| 446 |
+
value: 13.764871626330915
|
| 447 |
+
- type: nauc_mrr_at_20_diff1
|
| 448 |
+
value: 45.11925458479102
|
| 449 |
+
- type: nauc_mrr_at_20_max
|
| 450 |
+
value: 53.35685123898342
|
| 451 |
+
- type: nauc_mrr_at_20_std
|
| 452 |
+
value: 18.127344968819905
|
| 453 |
+
- type: nauc_mrr_at_3_diff1
|
| 454 |
+
value: 45.377195452730234
|
| 455 |
+
- type: nauc_mrr_at_3_max
|
| 456 |
+
value: 53.35146309217089
|
| 457 |
+
- type: nauc_mrr_at_3_std
|
| 458 |
+
value: 17.47105877186237
|
| 459 |
+
- type: nauc_mrr_at_5_diff1
|
| 460 |
+
value: 45.00525578771549
|
| 461 |
+
- type: nauc_mrr_at_5_max
|
| 462 |
+
value: 53.76227254707128
|
| 463 |
+
- type: nauc_mrr_at_5_std
|
| 464 |
+
value: 18.437290060746957
|
| 465 |
+
- type: nauc_ndcg_at_1000_diff1
|
| 466 |
+
value: 31.19215594457491
|
| 467 |
+
- type: nauc_ndcg_at_1000_max
|
| 468 |
+
value: 38.09555406458668
|
| 469 |
+
- type: nauc_ndcg_at_1000_std
|
| 470 |
+
value: 7.225628621238009
|
| 471 |
+
- type: nauc_ndcg_at_100_diff1
|
| 472 |
+
value: 30.726331247999934
|
| 473 |
+
- type: nauc_ndcg_at_100_max
|
| 474 |
+
value: 37.81369589418277
|
| 475 |
+
- type: nauc_ndcg_at_100_std
|
| 476 |
+
value: 7.242855238555071
|
| 477 |
+
- type: nauc_ndcg_at_10_diff1
|
| 478 |
+
value: 27.514048333744835
|
| 479 |
+
- type: nauc_ndcg_at_10_max
|
| 480 |
+
value: 33.10990399385253
|
| 481 |
+
- type: nauc_ndcg_at_10_std
|
| 482 |
+
value: 0.3051899572112002
|
| 483 |
+
- type: nauc_ndcg_at_1_diff1
|
| 484 |
+
value: 47.06089085235751
|
| 485 |
+
- type: nauc_ndcg_at_1_max
|
| 486 |
+
value: 47.7300872370495
|
| 487 |
+
- type: nauc_ndcg_at_1_std
|
| 488 |
+
value: 12.468605493613916
|
| 489 |
+
- type: nauc_ndcg_at_20_diff1
|
| 490 |
+
value: 29.404215438764496
|
| 491 |
+
- type: nauc_ndcg_at_20_max
|
| 492 |
+
value: 35.26967886796471
|
| 493 |
+
- type: nauc_ndcg_at_20_std
|
| 494 |
+
value: 3.7214697890813353
|
| 495 |
+
- type: nauc_ndcg_at_3_diff1
|
| 496 |
+
value: 29.448848639643067
|
| 497 |
+
- type: nauc_ndcg_at_3_max
|
| 498 |
+
value: 33.85912412370657
|
| 499 |
+
- type: nauc_ndcg_at_3_std
|
| 500 |
+
value: 0.895453646819452
|
| 501 |
+
- type: nauc_ndcg_at_5_diff1
|
| 502 |
+
value: 26.916649012613526
|
| 503 |
+
- type: nauc_ndcg_at_5_max
|
| 504 |
+
value: 30.899005979291644
|
| 505 |
+
- type: nauc_ndcg_at_5_std
|
| 506 |
+
value: -1.0001575639156615
|
| 507 |
+
- type: nauc_precision_at_1000_diff1
|
| 508 |
+
value: -8.492004667432635
|
| 509 |
+
- type: nauc_precision_at_1000_max
|
| 510 |
+
value: 14.970190384017679
|
| 511 |
+
- type: nauc_precision_at_1000_std
|
| 512 |
+
value: 32.871386621137816
|
| 513 |
+
- type: nauc_precision_at_100_diff1
|
| 514 |
+
value: -8.287314133999967
|
| 515 |
+
- type: nauc_precision_at_100_max
|
| 516 |
+
value: 17.794821961284736
|
| 517 |
+
- type: nauc_precision_at_100_std
|
| 518 |
+
value: 35.092483550562
|
| 519 |
+
- type: nauc_precision_at_10_diff1
|
| 520 |
+
value: -7.594128993028063
|
| 521 |
+
- type: nauc_precision_at_10_max
|
| 522 |
+
value: 24.691446370325732
|
| 523 |
+
- type: nauc_precision_at_10_std
|
| 524 |
+
value: 30.126552282608493
|
| 525 |
+
- type: nauc_precision_at_1_diff1
|
| 526 |
+
value: 47.06089085235751
|
| 527 |
+
- type: nauc_precision_at_1_max
|
| 528 |
+
value: 47.7300872370495
|
| 529 |
+
- type: nauc_precision_at_1_std
|
| 530 |
+
value: 12.468605493613916
|
| 531 |
+
- type: nauc_precision_at_20_diff1
|
| 532 |
+
value: -6.503872195775146
|
| 533 |
+
- type: nauc_precision_at_20_max
|
| 534 |
+
value: 21.789730053141312
|
| 535 |
+
- type: nauc_precision_at_20_std
|
| 536 |
+
value: 32.61349377558794
|
| 537 |
+
- type: nauc_precision_at_3_diff1
|
| 538 |
+
value: 0.67417079971061
|
| 539 |
+
- type: nauc_precision_at_3_max
|
| 540 |
+
value: 30.793871354370662
|
| 541 |
+
- type: nauc_precision_at_3_std
|
| 542 |
+
value: 18.35266479252011
|
| 543 |
+
- type: nauc_precision_at_5_diff1
|
| 544 |
+
value: -7.088881730215777
|
| 545 |
+
- type: nauc_precision_at_5_max
|
| 546 |
+
value: 26.539771712769006
|
| 547 |
+
- type: nauc_precision_at_5_std
|
| 548 |
+
value: 24.116262291865834
|
| 549 |
+
- type: nauc_recall_at_1000_diff1
|
| 550 |
+
value: 34.53263588412461
|
| 551 |
+
- type: nauc_recall_at_1000_max
|
| 552 |
+
value: 63.54157869100173
|
| 553 |
+
- type: nauc_recall_at_1000_std
|
| 554 |
+
value: 64.19854844792808
|
| 555 |
+
- type: nauc_recall_at_100_diff1
|
| 556 |
+
value: 22.86564728642275
|
| 557 |
+
- type: nauc_recall_at_100_max
|
| 558 |
+
value: 40.350507162549825
|
| 559 |
+
- type: nauc_recall_at_100_std
|
| 560 |
+
value: 29.24492545863015
|
| 561 |
+
- type: nauc_recall_at_10_diff1
|
| 562 |
+
value: 15.384818367225009
|
| 563 |
+
- type: nauc_recall_at_10_max
|
| 564 |
+
value: 24.41108571453699
|
| 565 |
+
- type: nauc_recall_at_10_std
|
| 566 |
+
value: -3.9216160585776323
|
| 567 |
+
- type: nauc_recall_at_1_diff1
|
| 568 |
+
value: 34.70849461278043
|
| 569 |
+
- type: nauc_recall_at_1_max
|
| 570 |
+
value: 12.778570893623042
|
| 571 |
+
- type: nauc_recall_at_1_std
|
| 572 |
+
value: -13.018292652743938
|
| 573 |
+
- type: nauc_recall_at_20_diff1
|
| 574 |
+
value: 18.122499000084208
|
| 575 |
+
- type: nauc_recall_at_20_max
|
| 576 |
+
value: 26.63104220179424
|
| 577 |
+
- type: nauc_recall_at_20_std
|
| 578 |
+
value: 3.969217732521512
|
| 579 |
+
- type: nauc_recall_at_3_diff1
|
| 580 |
+
value: 21.413050725250116
|
| 581 |
+
- type: nauc_recall_at_3_max
|
| 582 |
+
value: 16.18894988386887
|
| 583 |
+
- type: nauc_recall_at_3_std
|
| 584 |
+
value: -15.24884339282375
|
| 585 |
+
- type: nauc_recall_at_5_diff1
|
| 586 |
+
value: 16.35673072212927
|
| 587 |
+
- type: nauc_recall_at_5_max
|
| 588 |
+
value: 18.607003829267846
|
| 589 |
+
- type: nauc_recall_at_5_std
|
| 590 |
+
value: -10.463525876945454
|
| 591 |
+
- type: ndcg_at_1
|
| 592 |
+
value: 72.923
|
| 593 |
+
- type: ndcg_at_10
|
| 594 |
+
value: 71.882
|
| 595 |
+
- type: ndcg_at_100
|
| 596 |
+
value: 77.09899999999999
|
| 597 |
+
- type: ndcg_at_1000
|
| 598 |
+
value: 77.835
|
| 599 |
+
- type: ndcg_at_20
|
| 600 |
+
value: 74.497
|
| 601 |
+
- type: ndcg_at_3
|
| 602 |
+
value: 68.504
|
| 603 |
+
- type: ndcg_at_5
|
| 604 |
+
value: 69.068
|
| 605 |
+
- type: precision_at_1
|
| 606 |
+
value: 72.923
|
| 607 |
+
- type: precision_at_10
|
| 608 |
+
value: 19.936
|
| 609 |
+
- type: precision_at_100
|
| 610 |
+
value: 2.6310000000000002
|
| 611 |
+
- type: precision_at_1000
|
| 612 |
+
value: 0.27799999999999997
|
| 613 |
+
- type: precision_at_20
|
| 614 |
+
value: 11.33
|
| 615 |
+
- type: precision_at_3
|
| 616 |
+
value: 45.927
|
| 617 |
+
- type: precision_at_5
|
| 618 |
+
value: 33.131
|
| 619 |
+
- type: recall_at_1
|
| 620 |
+
value: 37.913000000000004
|
| 621 |
+
- type: recall_at_10
|
| 622 |
+
value: 78.365
|
| 623 |
+
- type: recall_at_100
|
| 624 |
+
value: 94.348
|
| 625 |
+
- type: recall_at_1000
|
| 626 |
+
value: 98.187
|
| 627 |
+
- type: recall_at_20
|
| 628 |
+
value: 85.229
|
| 629 |
+
- type: recall_at_3
|
| 630 |
+
value: 61.42999999999999
|
| 631 |
+
- type: recall_at_5
|
| 632 |
+
value: 69.56700000000001
|
| 633 |
+
task:
|
| 634 |
+
type: Retrieval
|
| 635 |
+
- dataset:
|
| 636 |
+
config: ru
|
| 637 |
+
name: MTEB MassiveIntentClassification (ru)
|
| 638 |
+
revision: 4672e20407010da34463acc759c162ca9734bca6
|
| 639 |
+
split: test
|
| 640 |
+
type: mteb/amazon_massive_intent
|
| 641 |
+
metrics:
|
| 642 |
+
- type: accuracy
|
| 643 |
+
value: 79.11903160726294
|
| 644 |
+
- type: f1
|
| 645 |
+
value: 76.22609082694545
|
| 646 |
+
- type: f1_weighted
|
| 647 |
+
value: 77.81461248063566
|
| 648 |
+
- type: main_score
|
| 649 |
+
value: 79.11903160726294
|
| 650 |
+
task:
|
| 651 |
+
type: Classification
|
| 652 |
+
- dataset:
|
| 653 |
+
config: ru
|
| 654 |
+
name: MTEB MassiveScenarioClassification (ru)
|
| 655 |
+
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
|
| 656 |
+
split: test
|
| 657 |
+
type: mteb/amazon_massive_scenario
|
| 658 |
+
metrics:
|
| 659 |
+
- type: accuracy
|
| 660 |
+
value: 88.80632145258912
|
| 661 |
+
- type: f1
|
| 662 |
+
value: 87.53157475314829
|
| 663 |
+
- type: f1_weighted
|
| 664 |
+
value: 88.22733432521495
|
| 665 |
+
- type: main_score
|
| 666 |
+
value: 88.80632145258912
|
| 667 |
+
task:
|
| 668 |
+
type: Classification
|
| 669 |
+
- dataset:
|
| 670 |
+
config: default
|
| 671 |
+
name: MTEB RUParaPhraserSTS (default)
|
| 672 |
+
revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4
|
| 673 |
+
split: test
|
| 674 |
+
type: merionum/ru_paraphraser
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_pearson
|
| 677 |
+
value: 72.70307124858925
|
| 678 |
+
- type: cosine_spearman
|
| 679 |
+
value: 78.09439086920204
|
| 680 |
+
- type: euclidean_pearson
|
| 681 |
+
value: 76.2033672014715
|
| 682 |
+
- type: euclidean_spearman
|
| 683 |
+
value: 78.09439086920204
|
| 684 |
+
- type: main_score
|
| 685 |
+
value: 78.09439086920204
|
| 686 |
+
- type: manhattan_pearson
|
| 687 |
+
value: 76.11750470223116
|
| 688 |
+
- type: manhattan_spearman
|
| 689 |
+
value: 78.01081063503413
|
| 690 |
+
- type: pearson
|
| 691 |
+
value: 72.70307124858925
|
| 692 |
+
- type: spearman
|
| 693 |
+
value: 78.09439086920204
|
| 694 |
+
task:
|
| 695 |
+
type: STS
|
| 696 |
+
- dataset:
|
| 697 |
+
config: default
|
| 698 |
+
name: MTEB RiaNewsRetrieval (default)
|
| 699 |
+
revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7
|
| 700 |
+
split: test
|
| 701 |
+
type: ai-forever/ria-news-retrieval
|
| 702 |
+
metrics:
|
| 703 |
+
- type: main_score
|
| 704 |
+
value: 86.819
|
| 705 |
+
- type: map_at_1
|
| 706 |
+
value: 78.79
|
| 707 |
+
- type: map_at_10
|
| 708 |
+
value: 84.516
|
| 709 |
+
- type: map_at_100
|
| 710 |
+
value: 84.68
|
| 711 |
+
- type: map_at_1000
|
| 712 |
+
value: 84.685
|
| 713 |
+
- type: map_at_20
|
| 714 |
+
value: 84.624
|
| 715 |
+
- type: map_at_3
|
| 716 |
+
value: 83.722
|
| 717 |
+
- type: map_at_5
|
| 718 |
+
value: 84.246
|
| 719 |
+
- type: mrr_at_1
|
| 720 |
+
value: 78.78
|
| 721 |
+
- type: mrr_at_10
|
| 722 |
+
value: 84.51815476190441
|
| 723 |
+
- type: mrr_at_100
|
| 724 |
+
value: 84.68390840473289
|
| 725 |
+
- type: mrr_at_1000
|
| 726 |
+
value: 84.68947095200002
|
| 727 |
+
- type: mrr_at_20
|
| 728 |
+
value: 84.62958130822527
|
| 729 |
+
- type: mrr_at_3
|
| 730 |
+
value: 83.74499999999964
|
| 731 |
+
- type: mrr_at_5
|
| 732 |
+
value: 84.23849999999955
|
| 733 |
+
- type: nauc_map_at_1000_diff1
|
| 734 |
+
value: 82.09914867708899
|
| 735 |
+
- type: nauc_map_at_1000_max
|
| 736 |
+
value: 43.02024854784386
|
| 737 |
+
- type: nauc_map_at_1000_std
|
| 738 |
+
value: -22.919695880762777
|
| 739 |
+
- type: nauc_map_at_100_diff1
|
| 740 |
+
value: 82.09705922783733
|
| 741 |
+
- type: nauc_map_at_100_max
|
| 742 |
+
value: 43.02697379581718
|
| 743 |
+
- type: nauc_map_at_100_std
|
| 744 |
+
value: -22.90719212899522
|
| 745 |
+
- type: nauc_map_at_10_diff1
|
| 746 |
+
value: 82.04404594672894
|
| 747 |
+
- type: nauc_map_at_10_max
|
| 748 |
+
value: 43.06752103182731
|
| 749 |
+
- type: nauc_map_at_10_std
|
| 750 |
+
value: -23.007870153273576
|
| 751 |
+
- type: nauc_map_at_1_diff1
|
| 752 |
+
value: 83.89134152210333
|
| 753 |
+
- type: nauc_map_at_1_max
|
| 754 |
+
value: 38.083626428503415
|
| 755 |
+
- type: nauc_map_at_1_std
|
| 756 |
+
value: -25.817960401194252
|
| 757 |
+
- type: nauc_map_at_20_diff1
|
| 758 |
+
value: 82.08534662247806
|
| 759 |
+
- type: nauc_map_at_20_max
|
| 760 |
+
value: 43.074305042312346
|
| 761 |
+
- type: nauc_map_at_20_std
|
| 762 |
+
value: -22.91785703613217
|
| 763 |
+
- type: nauc_map_at_3_diff1
|
| 764 |
+
value: 81.7967508697558
|
| 765 |
+
- type: nauc_map_at_3_max
|
| 766 |
+
value: 42.90927479098251
|
| 767 |
+
- type: nauc_map_at_3_std
|
| 768 |
+
value: -24.01312203859392
|
| 769 |
+
- type: nauc_map_at_5_diff1
|
| 770 |
+
value: 81.90704517505098
|
| 771 |
+
- type: nauc_map_at_5_max
|
| 772 |
+
value: 43.05204677044616
|
| 773 |
+
- type: nauc_map_at_5_std
|
| 774 |
+
value: -23.267331507554896
|
| 775 |
+
- type: nauc_mrr_at_1000_diff1
|
| 776 |
+
value: 82.11902348082472
|
| 777 |
+
- type: nauc_mrr_at_1000_max
|
| 778 |
+
value: 43.04118936353063
|
| 779 |
+
- type: nauc_mrr_at_1000_std
|
| 780 |
+
value: -22.858804296830773
|
| 781 |
+
- type: nauc_mrr_at_100_diff1
|
| 782 |
+
value: 82.11685562002263
|
| 783 |
+
- type: nauc_mrr_at_100_max
|
| 784 |
+
value: 43.0482537895494
|
| 785 |
+
- type: nauc_mrr_at_100_std
|
| 786 |
+
value: -22.84431127787993
|
| 787 |
+
- type: nauc_mrr_at_10_diff1
|
| 788 |
+
value: 82.06909958688058
|
| 789 |
+
- type: nauc_mrr_at_10_max
|
| 790 |
+
value: 43.07921689466605
|
| 791 |
+
- type: nauc_mrr_at_10_std
|
| 792 |
+
value: -22.957623576663234
|
| 793 |
+
- type: nauc_mrr_at_1_diff1
|
| 794 |
+
value: 83.91147637794326
|
| 795 |
+
- type: nauc_mrr_at_1_max
|
| 796 |
+
value: 37.91917159543152
|
| 797 |
+
- type: nauc_mrr_at_1_std
|
| 798 |
+
value: -26.141868289283266
|
| 799 |
+
- type: nauc_mrr_at_20_diff1
|
| 800 |
+
value: 82.10314004731809
|
| 801 |
+
- type: nauc_mrr_at_20_max
|
| 802 |
+
value: 43.09295406509764
|
| 803 |
+
- type: nauc_mrr_at_20_std
|
| 804 |
+
value: -22.862091782178787
|
| 805 |
+
- type: nauc_mrr_at_3_diff1
|
| 806 |
+
value: 81.82117067269036
|
| 807 |
+
- type: nauc_mrr_at_3_max
|
| 808 |
+
value: 42.94628953323521
|
| 809 |
+
- type: nauc_mrr_at_3_std
|
| 810 |
+
value: -23.852510312400714
|
| 811 |
+
- type: nauc_mrr_at_5_diff1
|
| 812 |
+
value: 81.92857441701598
|
| 813 |
+
- type: nauc_mrr_at_5_max
|
| 814 |
+
value: 43.129719354492934
|
| 815 |
+
- type: nauc_mrr_at_5_std
|
| 816 |
+
value: -23.145342272624085
|
| 817 |
+
- type: nauc_ndcg_at_1000_diff1
|
| 818 |
+
value: 81.75015729717991
|
| 819 |
+
- type: nauc_ndcg_at_1000_max
|
| 820 |
+
value: 44.7266586308995
|
| 821 |
+
- type: nauc_ndcg_at_1000_std
|
| 822 |
+
value: -20.60663899715267
|
| 823 |
+
- type: nauc_ndcg_at_100_diff1
|
| 824 |
+
value: 81.6897808298767
|
| 825 |
+
- type: nauc_ndcg_at_100_max
|
| 826 |
+
value: 44.99492791287099
|
| 827 |
+
- type: nauc_ndcg_at_100_std
|
| 828 |
+
value: -20.09637266506936
|
| 829 |
+
- type: nauc_ndcg_at_10_diff1
|
| 830 |
+
value: 81.46290312197337
|
| 831 |
+
- type: nauc_ndcg_at_10_max
|
| 832 |
+
value: 45.30218378452244
|
| 833 |
+
- type: nauc_ndcg_at_10_std
|
| 834 |
+
value: -20.70393523891777
|
| 835 |
+
- type: nauc_ndcg_at_1_diff1
|
| 836 |
+
value: 83.89134152210333
|
| 837 |
+
- type: nauc_ndcg_at_1_max
|
| 838 |
+
value: 38.083626428503415
|
| 839 |
+
- type: nauc_ndcg_at_1_std
|
| 840 |
+
value: -25.817960401194252
|
| 841 |
+
- type: nauc_ndcg_at_20_diff1
|
| 842 |
+
value: 81.61080772657213
|
| 843 |
+
- type: nauc_ndcg_at_20_max
|
| 844 |
+
value: 45.36571800492172
|
| 845 |
+
- type: nauc_ndcg_at_20_std
|
| 846 |
+
value: -20.278763852504042
|
| 847 |
+
- type: nauc_ndcg_at_3_diff1
|
| 848 |
+
value: 80.95965359410461
|
| 849 |
+
- type: nauc_ndcg_at_3_max
|
| 850 |
+
value: 44.756971949205834
|
| 851 |
+
- type: nauc_ndcg_at_3_std
|
| 852 |
+
value: -23.07797617717319
|
| 853 |
+
- type: nauc_ndcg_at_5_diff1
|
| 854 |
+
value: 81.12417712163976
|
| 855 |
+
- type: nauc_ndcg_at_5_max
|
| 856 |
+
value: 45.15727381406512
|
| 857 |
+
- type: nauc_ndcg_at_5_std
|
| 858 |
+
value: -21.52861766165519
|
| 859 |
+
- type: nauc_precision_at_1000_diff1
|
| 860 |
+
value: 76.80566850396093
|
| 861 |
+
- type: nauc_precision_at_1000_max
|
| 862 |
+
value: 82.45685370922442
|
| 863 |
+
- type: nauc_precision_at_1000_std
|
| 864 |
+
value: 46.93570976777808
|
| 865 |
+
- type: nauc_precision_at_100_diff1
|
| 866 |
+
value: 77.21645520953484
|
| 867 |
+
- type: nauc_precision_at_100_max
|
| 868 |
+
value: 73.43604108309935
|
| 869 |
+
- type: nauc_precision_at_100_std
|
| 870 |
+
value: 31.978176891671367
|
| 871 |
+
- type: nauc_precision_at_10_diff1
|
| 872 |
+
value: 77.88251664302092
|
| 873 |
+
- type: nauc_precision_at_10_max
|
| 874 |
+
value: 60.58112638995018
|
| 875 |
+
- type: nauc_precision_at_10_std
|
| 876 |
+
value: -3.674424315180332
|
| 877 |
+
- type: nauc_precision_at_1_diff1
|
| 878 |
+
value: 83.89134152210333
|
| 879 |
+
- type: nauc_precision_at_1_max
|
| 880 |
+
value: 38.083626428503415
|
| 881 |
+
- type: nauc_precision_at_1_std
|
| 882 |
+
value: -25.817960401194252
|
| 883 |
+
- type: nauc_precision_at_20_diff1
|
| 884 |
+
value: 78.16426786697438
|
| 885 |
+
- type: nauc_precision_at_20_max
|
| 886 |
+
value: 66.0723612699222
|
| 887 |
+
- type: nauc_precision_at_20_std
|
| 888 |
+
value: 6.121527084555938
|
| 889 |
+
- type: nauc_precision_at_3_diff1
|
| 890 |
+
value: 77.43122492166451
|
| 891 |
+
- type: nauc_precision_at_3_max
|
| 892 |
+
value: 52.50727288548085
|
| 893 |
+
- type: nauc_precision_at_3_std
|
| 894 |
+
value: -19.036076920799427
|
| 895 |
+
- type: nauc_precision_at_5_diff1
|
| 896 |
+
value: 77.1127254320532
|
| 897 |
+
- type: nauc_precision_at_5_max
|
| 898 |
+
value: 56.100901899221135
|
| 899 |
+
- type: nauc_precision_at_5_std
|
| 900 |
+
value: -12.009191140844198
|
| 901 |
+
- type: nauc_recall_at_1000_diff1
|
| 902 |
+
value: 76.80566850396035
|
| 903 |
+
- type: nauc_recall_at_1000_max
|
| 904 |
+
value: 82.45685370922577
|
| 905 |
+
- type: nauc_recall_at_1000_std
|
| 906 |
+
value: 46.93570976777776
|
| 907 |
+
- type: nauc_recall_at_100_diff1
|
| 908 |
+
value: 77.21645520953459
|
| 909 |
+
- type: nauc_recall_at_100_max
|
| 910 |
+
value: 73.43604108310011
|
| 911 |
+
- type: nauc_recall_at_100_std
|
| 912 |
+
value: 31.978176891671993
|
| 913 |
+
- type: nauc_recall_at_10_diff1
|
| 914 |
+
value: 77.88251664302089
|
| 915 |
+
- type: nauc_recall_at_10_max
|
| 916 |
+
value: 60.58112638994999
|
| 917 |
+
- type: nauc_recall_at_10_std
|
| 918 |
+
value: -3.6744243151805427
|
| 919 |
+
- type: nauc_recall_at_1_diff1
|
| 920 |
+
value: 83.89134152210333
|
| 921 |
+
- type: nauc_recall_at_1_max
|
| 922 |
+
value: 38.083626428503415
|
| 923 |
+
- type: nauc_recall_at_1_std
|
| 924 |
+
value: -25.817960401194252
|
| 925 |
+
- type: nauc_recall_at_20_diff1
|
| 926 |
+
value: 78.16426786697409
|
| 927 |
+
- type: nauc_recall_at_20_max
|
| 928 |
+
value: 66.07236126992217
|
| 929 |
+
- type: nauc_recall_at_20_std
|
| 930 |
+
value: 6.121527084555941
|
| 931 |
+
- type: nauc_recall_at_3_diff1
|
| 932 |
+
value: 77.43122492166454
|
| 933 |
+
- type: nauc_recall_at_3_max
|
| 934 |
+
value: 52.507272885480816
|
| 935 |
+
- type: nauc_recall_at_3_std
|
| 936 |
+
value: -19.036076920799776
|
| 937 |
+
- type: nauc_recall_at_5_diff1
|
| 938 |
+
value: 77.11272543205318
|
| 939 |
+
- type: nauc_recall_at_5_max
|
| 940 |
+
value: 56.10090189922128
|
| 941 |
+
- type: nauc_recall_at_5_std
|
| 942 |
+
value: -12.009191140843809
|
| 943 |
+
- type: ndcg_at_1
|
| 944 |
+
value: 78.79
|
| 945 |
+
- type: ndcg_at_10
|
| 946 |
+
value: 86.819
|
| 947 |
+
- type: ndcg_at_100
|
| 948 |
+
value: 87.599
|
| 949 |
+
- type: ndcg_at_1000
|
| 950 |
+
value: 87.761
|
| 951 |
+
- type: ndcg_at_20
|
| 952 |
+
value: 87.208
|
| 953 |
+
- type: ndcg_at_3
|
| 954 |
+
value: 85.222
|
| 955 |
+
- type: ndcg_at_5
|
| 956 |
+
value: 86.164
|
| 957 |
+
- type: precision_at_1
|
| 958 |
+
value: 78.79
|
| 959 |
+
- type: precision_at_10
|
| 960 |
+
value: 9.384
|
| 961 |
+
- type: precision_at_100
|
| 962 |
+
value: 0.975
|
| 963 |
+
- type: precision_at_1000
|
| 964 |
+
value: 0.099
|
| 965 |
+
- type: precision_at_20
|
| 966 |
+
value: 4.769
|
| 967 |
+
- type: precision_at_3
|
| 968 |
+
value: 29.842999999999996
|
| 969 |
+
- type: precision_at_5
|
| 970 |
+
value: 18.362000000000002
|
| 971 |
+
- type: recall_at_1
|
| 972 |
+
value: 78.79
|
| 973 |
+
- type: recall_at_10
|
| 974 |
+
value: 93.84
|
| 975 |
+
- type: recall_at_100
|
| 976 |
+
value: 97.45
|
| 977 |
+
- type: recall_at_1000
|
| 978 |
+
value: 98.76
|
| 979 |
+
- type: recall_at_20
|
| 980 |
+
value: 95.37
|
| 981 |
+
- type: recall_at_3
|
| 982 |
+
value: 89.53
|
| 983 |
+
- type: recall_at_5
|
| 984 |
+
value: 91.81
|
| 985 |
+
task:
|
| 986 |
+
type: Retrieval
|
| 987 |
+
- dataset:
|
| 988 |
+
config: default
|
| 989 |
+
name: MTEB RuBQReranking (default)
|
| 990 |
+
revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2
|
| 991 |
+
split: test
|
| 992 |
+
type: ai-forever/rubq-reranking
|
| 993 |
+
metrics:
|
| 994 |
+
- type: main_score
|
| 995 |
+
value: 77.07394404835635
|
| 996 |
+
- type: map
|
| 997 |
+
value: 77.07394404835635
|
| 998 |
+
- type: mrr
|
| 999 |
+
value: 82.53144412718882
|
| 1000 |
+
- type: nAUC_map_diff1
|
| 1001 |
+
value: 45.29805217456628
|
| 1002 |
+
- type: nAUC_map_max
|
| 1003 |
+
value: 34.39894042439188
|
| 1004 |
+
- type: nAUC_map_std
|
| 1005 |
+
value: 21.11309674418275
|
| 1006 |
+
- type: nAUC_mrr_diff1
|
| 1007 |
+
value: 54.783994737367046
|
| 1008 |
+
- type: nAUC_mrr_max
|
| 1009 |
+
value: 45.68526733900048
|
| 1010 |
+
- type: nAUC_mrr_std
|
| 1011 |
+
value: 28.22466385500339
|
| 1012 |
+
task:
|
| 1013 |
+
type: Reranking
|
| 1014 |
+
- dataset:
|
| 1015 |
+
config: default
|
| 1016 |
+
name: MTEB RuBQRetrieval (default)
|
| 1017 |
+
revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b
|
| 1018 |
+
split: test
|
| 1019 |
+
type: ai-forever/rubq-retrieval
|
| 1020 |
+
metrics:
|
| 1021 |
+
- type: main_score
|
| 1022 |
+
value: 72.392
|
| 1023 |
+
- type: map_at_1
|
| 1024 |
+
value: 47.370000000000005
|
| 1025 |
+
- type: map_at_10
|
| 1026 |
+
value: 65.503
|
| 1027 |
+
- type: map_at_100
|
| 1028 |
+
value: 66.38
|
| 1029 |
+
- type: map_at_1000
|
| 1030 |
+
value: 66.42099999999999
|
| 1031 |
+
- type: map_at_20
|
| 1032 |
+
value: 66.071
|
| 1033 |
+
- type: map_at_3
|
| 1034 |
+
value: 61.439
|
| 1035 |
+
- type: map_at_5
|
| 1036 |
+
value: 63.922999999999995
|
| 1037 |
+
- type: mrr_at_1
|
| 1038 |
+
value: 67.37588652482269
|
| 1039 |
+
- type: mrr_at_10
|
| 1040 |
+
value: 76.0066747345116
|
| 1041 |
+
- type: mrr_at_100
|
| 1042 |
+
value: 76.25754138969413
|
| 1043 |
+
- type: mrr_at_1000
|
| 1044 |
+
value: 76.26968825657428
|
| 1045 |
+
- type: mrr_at_20
|
| 1046 |
+
value: 76.17548265904622
|
| 1047 |
+
- type: mrr_at_3
|
| 1048 |
+
value: 74.61583924349881
|
| 1049 |
+
- type: mrr_at_5
|
| 1050 |
+
value: 75.46690307328608
|
| 1051 |
+
- type: nauc_map_at_1000_diff1
|
| 1052 |
+
value: 42.52570720187294
|
| 1053 |
+
- type: nauc_map_at_1000_max
|
| 1054 |
+
value: 37.40318318724238
|
| 1055 |
+
- type: nauc_map_at_1000_std
|
| 1056 |
+
value: 0.6037788201535506
|
| 1057 |
+
- type: nauc_map_at_100_diff1
|
| 1058 |
+
value: 42.493410029691226
|
| 1059 |
+
- type: nauc_map_at_100_max
|
| 1060 |
+
value: 37.39802489244377
|
| 1061 |
+
- type: nauc_map_at_100_std
|
| 1062 |
+
value: 0.6071359951887154
|
| 1063 |
+
- type: nauc_map_at_10_diff1
|
| 1064 |
+
value: 42.09833519659916
|
| 1065 |
+
- type: nauc_map_at_10_max
|
| 1066 |
+
value: 37.1184138958874
|
| 1067 |
+
- type: nauc_map_at_10_std
|
| 1068 |
+
value: 0.4063543094010351
|
| 1069 |
+
- type: nauc_map_at_1_diff1
|
| 1070 |
+
value: 49.56605205141156
|
| 1071 |
+
- type: nauc_map_at_1_max
|
| 1072 |
+
value: 26.251096698710384
|
| 1073 |
+
- type: nauc_map_at_1_std
|
| 1074 |
+
value: -4.580748485387834
|
| 1075 |
+
- type: nauc_map_at_20_diff1
|
| 1076 |
+
value: 42.33372393482018
|
| 1077 |
+
- type: nauc_map_at_20_max
|
| 1078 |
+
value: 37.416955604649985
|
| 1079 |
+
- type: nauc_map_at_20_std
|
| 1080 |
+
value: 0.6050577802787294
|
| 1081 |
+
- type: nauc_map_at_3_diff1
|
| 1082 |
+
value: 42.362234475441845
|
| 1083 |
+
- type: nauc_map_at_3_max
|
| 1084 |
+
value: 34.56001379838821
|
| 1085 |
+
- type: nauc_map_at_3_std
|
| 1086 |
+
value: -1.507636598929042
|
| 1087 |
+
- type: nauc_map_at_5_diff1
|
| 1088 |
+
value: 42.0202264882535
|
| 1089 |
+
- type: nauc_map_at_5_max
|
| 1090 |
+
value: 36.64306050200848
|
| 1091 |
+
- type: nauc_map_at_5_std
|
| 1092 |
+
value: -0.09509025708798424
|
| 1093 |
+
- type: nauc_mrr_at_1000_diff1
|
| 1094 |
+
value: 58.99601742026931
|
| 1095 |
+
- type: nauc_mrr_at_1000_max
|
| 1096 |
+
value: 49.61561872452777
|
| 1097 |
+
- type: nauc_mrr_at_1000_std
|
| 1098 |
+
value: 2.3956102974352356
|
| 1099 |
+
- type: nauc_mrr_at_100_diff1
|
| 1100 |
+
value: 58.9865943101085
|
| 1101 |
+
- type: nauc_mrr_at_100_max
|
| 1102 |
+
value: 49.6248111507265
|
| 1103 |
+
- type: nauc_mrr_at_100_std
|
| 1104 |
+
value: 2.411155095066369
|
| 1105 |
+
- type: nauc_mrr_at_10_diff1
|
| 1106 |
+
value: 58.81758131092919
|
| 1107 |
+
- type: nauc_mrr_at_10_max
|
| 1108 |
+
value: 49.780365572616695
|
| 1109 |
+
- type: nauc_mrr_at_10_std
|
| 1110 |
+
value: 2.7068696565195944
|
| 1111 |
+
- type: nauc_mrr_at_1_diff1
|
| 1112 |
+
value: 61.67036882487055
|
| 1113 |
+
- type: nauc_mrr_at_1_max
|
| 1114 |
+
value: 45.455271042821714
|
| 1115 |
+
- type: nauc_mrr_at_1_std
|
| 1116 |
+
value: -0.9370526815458349
|
| 1117 |
+
- type: nauc_mrr_at_20_diff1
|
| 1118 |
+
value: 58.93674818203478
|
| 1119 |
+
- type: nauc_mrr_at_20_max
|
| 1120 |
+
value: 49.703218108625215
|
| 1121 |
+
- type: nauc_mrr_at_20_std
|
| 1122 |
+
value: 2.4473106598190415
|
| 1123 |
+
- type: nauc_mrr_at_3_diff1
|
| 1124 |
+
value: 59.046856598788445
|
| 1125 |
+
- type: nauc_mrr_at_3_max
|
| 1126 |
+
value: 49.37161726123392
|
| 1127 |
+
- type: nauc_mrr_at_3_std
|
| 1128 |
+
value: 1.5110936686701506
|
| 1129 |
+
- type: nauc_mrr_at_5_diff1
|
| 1130 |
+
value: 58.92289378915668
|
| 1131 |
+
- type: nauc_mrr_at_5_max
|
| 1132 |
+
value: 49.847638994134144
|
| 1133 |
+
- type: nauc_mrr_at_5_std
|
| 1134 |
+
value: 2.420421880131702
|
| 1135 |
+
- type: nauc_ndcg_at_1000_diff1
|
| 1136 |
+
value: 45.56062215161734
|
| 1137 |
+
- type: nauc_ndcg_at_1000_max
|
| 1138 |
+
value: 41.507152286702
|
| 1139 |
+
- type: nauc_ndcg_at_1000_std
|
| 1140 |
+
value: 2.79388283208751
|
| 1141 |
+
- type: nauc_ndcg_at_100_diff1
|
| 1142 |
+
value: 44.84064192570408
|
| 1143 |
+
- type: nauc_ndcg_at_100_max
|
| 1144 |
+
value: 41.50353573562353
|
| 1145 |
+
- type: nauc_ndcg_at_100_std
|
| 1146 |
+
value: 3.1804999773629357
|
| 1147 |
+
- type: nauc_ndcg_at_10_diff1
|
| 1148 |
+
value: 43.341482144213614
|
| 1149 |
+
- type: nauc_ndcg_at_10_max
|
| 1150 |
+
value: 41.159590898395074
|
| 1151 |
+
- type: nauc_ndcg_at_10_std
|
| 1152 |
+
value: 2.945242338240843
|
| 1153 |
+
- type: nauc_ndcg_at_1_diff1
|
| 1154 |
+
value: 62.23623985611396
|
| 1155 |
+
- type: nauc_ndcg_at_1_max
|
| 1156 |
+
value: 45.04945770947091
|
| 1157 |
+
- type: nauc_ndcg_at_1_std
|
| 1158 |
+
value: -0.8804967656575725
|
| 1159 |
+
- type: nauc_ndcg_at_20_diff1
|
| 1160 |
+
value: 43.905372612093664
|
| 1161 |
+
- type: nauc_ndcg_at_20_max
|
| 1162 |
+
value: 41.797709837872446
|
| 1163 |
+
- type: nauc_ndcg_at_20_std
|
| 1164 |
+
value: 3.1853356915569653
|
| 1165 |
+
- type: nauc_ndcg_at_3_diff1
|
| 1166 |
+
value: 44.18163998834299
|
| 1167 |
+
- type: nauc_ndcg_at_3_max
|
| 1168 |
+
value: 38.352891017864636
|
| 1169 |
+
- type: nauc_ndcg_at_3_std
|
| 1170 |
+
value: -0.8235767021150929
|
| 1171 |
+
- type: nauc_ndcg_at_5_diff1
|
| 1172 |
+
value: 43.41374688421302
|
| 1173 |
+
- type: nauc_ndcg_at_5_max
|
| 1174 |
+
value: 40.390365601593956
|
| 1175 |
+
- type: nauc_ndcg_at_5_std
|
| 1176 |
+
value: 1.6743650108127537
|
| 1177 |
+
- type: nauc_precision_at_1000_diff1
|
| 1178 |
+
value: -9.711058370691381
|
| 1179 |
+
- type: nauc_precision_at_1000_max
|
| 1180 |
+
value: 6.97321343449286
|
| 1181 |
+
- type: nauc_precision_at_1000_std
|
| 1182 |
+
value: 7.933531916622121
|
| 1183 |
+
- type: nauc_precision_at_100_diff1
|
| 1184 |
+
value: -8.247029644152319
|
| 1185 |
+
- type: nauc_precision_at_100_max
|
| 1186 |
+
value: 10.86740140944616
|
| 1187 |
+
- type: nauc_precision_at_100_std
|
| 1188 |
+
value: 9.581885544675918
|
| 1189 |
+
- type: nauc_precision_at_10_diff1
|
| 1190 |
+
value: -2.409043695429943
|
| 1191 |
+
- type: nauc_precision_at_10_max
|
| 1192 |
+
value: 21.04733206074314
|
| 1193 |
+
- type: nauc_precision_at_10_std
|
| 1194 |
+
value: 10.03334651647101
|
| 1195 |
+
- type: nauc_precision_at_1_diff1
|
| 1196 |
+
value: 62.23623985611396
|
| 1197 |
+
- type: nauc_precision_at_1_max
|
| 1198 |
+
value: 45.04945770947091
|
| 1199 |
+
- type: nauc_precision_at_1_std
|
| 1200 |
+
value: -0.8804967656575725
|
| 1201 |
+
- type: nauc_precision_at_20_diff1
|
| 1202 |
+
value: -5.230303656931621
|
| 1203 |
+
- type: nauc_precision_at_20_max
|
| 1204 |
+
value: 17.77799716919181
|
| 1205 |
+
- type: nauc_precision_at_20_std
|
| 1206 |
+
value: 10.739127998618654
|
| 1207 |
+
- type: nauc_precision_at_3_diff1
|
| 1208 |
+
value: 10.40376424999862
|
| 1209 |
+
- type: nauc_precision_at_3_max
|
| 1210 |
+
value: 30.933333400254035
|
| 1211 |
+
- type: nauc_precision_at_3_std
|
| 1212 |
+
value: 6.126209127968004
|
| 1213 |
+
- type: nauc_precision_at_5_diff1
|
| 1214 |
+
value: 3.147398101830739
|
| 1215 |
+
- type: nauc_precision_at_5_max
|
| 1216 |
+
value: 27.1746309955971
|
| 1217 |
+
- type: nauc_precision_at_5_std
|
| 1218 |
+
value: 8.874723615388788
|
| 1219 |
+
- type: nauc_recall_at_1000_diff1
|
| 1220 |
+
value: 5.055940692380908
|
| 1221 |
+
- type: nauc_recall_at_1000_max
|
| 1222 |
+
value: 22.42031123370267
|
| 1223 |
+
- type: nauc_recall_at_1000_std
|
| 1224 |
+
value: 27.75476692527869
|
| 1225 |
+
- type: nauc_recall_at_100_diff1
|
| 1226 |
+
value: 17.86391178198642
|
| 1227 |
+
- type: nauc_recall_at_100_max
|
| 1228 |
+
value: 34.776134863678955
|
| 1229 |
+
- type: nauc_recall_at_100_std
|
| 1230 |
+
value: 18.96377158778504
|
| 1231 |
+
- type: nauc_recall_at_10_diff1
|
| 1232 |
+
value: 24.863097695413597
|
| 1233 |
+
- type: nauc_recall_at_10_max
|
| 1234 |
+
value: 37.697411651507444
|
| 1235 |
+
- type: nauc_recall_at_10_std
|
| 1236 |
+
value: 9.519849994253967
|
| 1237 |
+
- type: nauc_recall_at_1_diff1
|
| 1238 |
+
value: 49.56605205141156
|
| 1239 |
+
- type: nauc_recall_at_1_max
|
| 1240 |
+
value: 26.251096698710384
|
| 1241 |
+
- type: nauc_recall_at_1_std
|
| 1242 |
+
value: -4.580748485387834
|
| 1243 |
+
- type: nauc_recall_at_20_diff1
|
| 1244 |
+
value: 22.440602811005636
|
| 1245 |
+
- type: nauc_recall_at_20_max
|
| 1246 |
+
value: 39.538861316515
|
| 1247 |
+
- type: nauc_recall_at_20_std
|
| 1248 |
+
value: 11.363269553121468
|
| 1249 |
+
- type: nauc_recall_at_3_diff1
|
| 1250 |
+
value: 32.80302839873736
|
| 1251 |
+
- type: nauc_recall_at_3_max
|
| 1252 |
+
value: 32.53105685012729
|
| 1253 |
+
- type: nauc_recall_at_3_std
|
| 1254 |
+
value: -0.7140166410605693
|
| 1255 |
+
- type: nauc_recall_at_5_diff1
|
| 1256 |
+
value: 29.375386639154865
|
| 1257 |
+
- type: nauc_recall_at_5_max
|
| 1258 |
+
value: 36.91045781164083
|
| 1259 |
+
- type: nauc_recall_at_5_std
|
| 1260 |
+
value: 4.725419050262578
|
| 1261 |
+
- type: ndcg_at_1
|
| 1262 |
+
value: 67.13900000000001
|
| 1263 |
+
- type: ndcg_at_10
|
| 1264 |
+
value: 72.392
|
| 1265 |
+
- type: ndcg_at_100
|
| 1266 |
+
value: 75.25800000000001
|
| 1267 |
+
- type: ndcg_at_1000
|
| 1268 |
+
value: 75.982
|
| 1269 |
+
- type: ndcg_at_20
|
| 1270 |
+
value: 73.783
|
| 1271 |
+
- type: ndcg_at_3
|
| 1272 |
+
value: 67.269
|
| 1273 |
+
- type: ndcg_at_5
|
| 1274 |
+
value: 69.807
|
| 1275 |
+
- type: precision_at_1
|
| 1276 |
+
value: 67.13900000000001
|
| 1277 |
+
- type: precision_at_10
|
| 1278 |
+
value: 13.327
|
| 1279 |
+
- type: precision_at_100
|
| 1280 |
+
value: 1.5559999999999998
|
| 1281 |
+
- type: precision_at_1000
|
| 1282 |
+
value: 0.164
|
| 1283 |
+
- type: precision_at_20
|
| 1284 |
+
value: 7.119000000000001
|
| 1285 |
+
- type: precision_at_3
|
| 1286 |
+
value: 35.599
|
| 1287 |
+
- type: precision_at_5
|
| 1288 |
+
value: 23.936
|
| 1289 |
+
- type: recall_at_1
|
| 1290 |
+
value: 47.370000000000005
|
| 1291 |
+
- type: recall_at_10
|
| 1292 |
+
value: 82.16
|
| 1293 |
+
- type: recall_at_100
|
| 1294 |
+
value: 93.34
|
| 1295 |
+
- type: recall_at_1000
|
| 1296 |
+
value: 98.202
|
| 1297 |
+
- type: recall_at_20
|
| 1298 |
+
value: 86.687
|
| 1299 |
+
- type: recall_at_3
|
| 1300 |
+
value: 69.319
|
| 1301 |
+
- type: recall_at_5
|
| 1302 |
+
value: 75.637
|
| 1303 |
+
task:
|
| 1304 |
+
type: Retrieval
|
| 1305 |
+
- dataset:
|
| 1306 |
+
config: default
|
| 1307 |
+
name: MTEB RuReviewsClassification (default)
|
| 1308 |
+
revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a
|
| 1309 |
+
split: test
|
| 1310 |
+
type: ai-forever/ru-reviews-classification
|
| 1311 |
+
metrics:
|
| 1312 |
+
- type: accuracy
|
| 1313 |
+
value: 75.0537109375
|
| 1314 |
+
- type: f1
|
| 1315 |
+
value: 74.00523205209554
|
| 1316 |
+
- type: f1_weighted
|
| 1317 |
+
value: 74.00436782840376
|
| 1318 |
+
- type: main_score
|
| 1319 |
+
value: 75.0537109375
|
| 1320 |
+
task:
|
| 1321 |
+
type: Classification
|
| 1322 |
+
- dataset:
|
| 1323 |
+
config: default
|
| 1324 |
+
name: MTEB RuSTSBenchmarkSTS (default)
|
| 1325 |
+
revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018
|
| 1326 |
+
split: test
|
| 1327 |
+
type: ai-forever/ru-stsbenchmark-sts
|
| 1328 |
+
metrics:
|
| 1329 |
+
- type: cosine_pearson
|
| 1330 |
+
value: 81.10255413476487
|
| 1331 |
+
- type: cosine_spearman
|
| 1332 |
+
value: 81.40020843157141
|
| 1333 |
+
- type: euclidean_pearson
|
| 1334 |
+
value: 81.25155479902466
|
| 1335 |
+
- type: euclidean_spearman
|
| 1336 |
+
value: 81.40020831064922
|
| 1337 |
+
- type: main_score
|
| 1338 |
+
value: 81.40020843157141
|
| 1339 |
+
- type: manhattan_pearson
|
| 1340 |
+
value: 81.1493715249014
|
| 1341 |
+
- type: manhattan_spearman
|
| 1342 |
+
value: 81.30973667941649
|
| 1343 |
+
- type: pearson
|
| 1344 |
+
value: 81.10255413476487
|
| 1345 |
+
- type: spearman
|
| 1346 |
+
value: 81.40020843157141
|
| 1347 |
+
task:
|
| 1348 |
+
type: STS
|
| 1349 |
+
- dataset:
|
| 1350 |
+
config: default
|
| 1351 |
+
name: MTEB RuSciBenchGRNTIClassification (default)
|
| 1352 |
+
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
|
| 1353 |
+
split: test
|
| 1354 |
+
type: ai-forever/ru-scibench-grnti-classification
|
| 1355 |
+
metrics:
|
| 1356 |
+
- type: accuracy
|
| 1357 |
+
value: 69.8974609375
|
| 1358 |
+
- type: f1
|
| 1359 |
+
value: 68.57837564785511
|
| 1360 |
+
- type: f1_weighted
|
| 1361 |
+
value: 68.59030489460784
|
| 1362 |
+
- type: main_score
|
| 1363 |
+
value: 69.8974609375
|
| 1364 |
+
task:
|
| 1365 |
+
type: Classification
|
| 1366 |
+
- dataset:
|
| 1367 |
+
config: default
|
| 1368 |
+
name: MTEB RuSciBenchGRNTIClusteringP2P (default)
|
| 1369 |
+
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
|
| 1370 |
+
split: test
|
| 1371 |
+
type: ai-forever/ru-scibench-grnti-classification
|
| 1372 |
+
metrics:
|
| 1373 |
+
- type: main_score
|
| 1374 |
+
value: 67.03880348548029
|
| 1375 |
+
- type: v_measure
|
| 1376 |
+
value: 67.03880348548029
|
| 1377 |
+
- type: v_measure_std
|
| 1378 |
+
value: 0.6126278133139618
|
| 1379 |
+
task:
|
| 1380 |
+
type: Clustering
|
| 1381 |
+
- dataset:
|
| 1382 |
+
config: default
|
| 1383 |
+
name: MTEB RuSciBenchOECDClassification (default)
|
| 1384 |
+
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
|
| 1385 |
+
split: test
|
| 1386 |
+
type: ai-forever/ru-scibench-oecd-classification
|
| 1387 |
+
metrics:
|
| 1388 |
+
- type: accuracy
|
| 1389 |
+
value: 54.63378906250001
|
| 1390 |
+
- type: f1
|
| 1391 |
+
value: 51.34306420274629
|
| 1392 |
+
- type: f1_weighted
|
| 1393 |
+
value: 51.33495867493914
|
| 1394 |
+
- type: main_score
|
| 1395 |
+
value: 54.63378906250001
|
| 1396 |
+
task:
|
| 1397 |
+
type: Classification
|
| 1398 |
+
- dataset:
|
| 1399 |
+
config: default
|
| 1400 |
+
name: MTEB RuSciBenchOECDClusteringP2P (default)
|
| 1401 |
+
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
|
| 1402 |
+
split: test
|
| 1403 |
+
type: ai-forever/ru-scibench-oecd-classification
|
| 1404 |
+
metrics:
|
| 1405 |
+
- type: main_score
|
| 1406 |
+
value: 56.55947121159027
|
| 1407 |
+
- type: v_measure
|
| 1408 |
+
value: 56.55947121159027
|
| 1409 |
+
- type: v_measure_std
|
| 1410 |
+
value: 0.5498882006880662
|
| 1411 |
+
task:
|
| 1412 |
+
type: Clustering
|
| 1413 |
+
- dataset:
|
| 1414 |
+
config: ru
|
| 1415 |
+
name: MTEB STS22 (ru)
|
| 1416 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
| 1417 |
+
split: test
|
| 1418 |
+
type: mteb/sts22-crosslingual-sts
|
| 1419 |
+
metrics:
|
| 1420 |
+
- type: cosine_pearson
|
| 1421 |
+
value: 61.833294921667914
|
| 1422 |
+
- type: cosine_spearman
|
| 1423 |
+
value: 63.53967536726357
|
| 1424 |
+
- type: euclidean_pearson
|
| 1425 |
+
value: 60.382865218855805
|
| 1426 |
+
- type: euclidean_spearman
|
| 1427 |
+
value: 63.53967536726357
|
| 1428 |
+
- type: main_score
|
| 1429 |
+
value: 63.53967536726357
|
| 1430 |
+
- type: manhattan_pearson
|
| 1431 |
+
value: 60.24879015304578
|
| 1432 |
+
- type: manhattan_spearman
|
| 1433 |
+
value: 63.42305760430092
|
| 1434 |
+
- type: pearson
|
| 1435 |
+
value: 61.833294921667914
|
| 1436 |
+
- type: spearman
|
| 1437 |
+
value: 63.53967536726357
|
| 1438 |
+
task:
|
| 1439 |
+
type: STS
|
| 1440 |
+
- dataset:
|
| 1441 |
+
config: default
|
| 1442 |
+
name: MTEB SensitiveTopicsClassification (default)
|
| 1443 |
+
revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2
|
| 1444 |
+
split: test
|
| 1445 |
+
type: ai-forever/sensitive-topics-classification
|
| 1446 |
+
metrics:
|
| 1447 |
+
- type: accuracy
|
| 1448 |
+
value: 39.8193359375
|
| 1449 |
+
- type: f1
|
| 1450 |
+
value: 55.46591740935434
|
| 1451 |
+
- type: lrap
|
| 1452 |
+
value: 66.50980631510454
|
| 1453 |
+
- type: main_score
|
| 1454 |
+
value: 39.8193359375
|
| 1455 |
+
task:
|
| 1456 |
+
type: MultilabelClassification
|
| 1457 |
+
- dataset:
|
| 1458 |
+
config: default
|
| 1459 |
+
name: MTEB TERRa (default)
|
| 1460 |
+
revision: 7b58f24536063837d644aab9a023c62199b2a612
|
| 1461 |
+
split: dev
|
| 1462 |
+
type: ai-forever/terra-pairclassification
|
| 1463 |
+
metrics:
|
| 1464 |
+
- type: cosine_accuracy
|
| 1465 |
+
value: 66.77524429967427
|
| 1466 |
+
- type: cosine_accuracy_threshold
|
| 1467 |
+
value: 55.58975338935852
|
| 1468 |
+
- type: cosine_ap
|
| 1469 |
+
value: 66.4567219323658
|
| 1470 |
+
- type: cosine_f1
|
| 1471 |
+
value: 70.64676616915423
|
| 1472 |
+
- type: cosine_f1_threshold
|
| 1473 |
+
value: 45.55969536304474
|
| 1474 |
+
- type: cosine_precision
|
| 1475 |
+
value: 57.028112449799195
|
| 1476 |
+
- type: cosine_recall
|
| 1477 |
+
value: 92.81045751633987
|
| 1478 |
+
- type: dot_accuracy
|
| 1479 |
+
value: 66.77524429967427
|
| 1480 |
+
- type: dot_accuracy_threshold
|
| 1481 |
+
value: 55.589759349823
|
| 1482 |
+
- type: dot_ap
|
| 1483 |
+
value: 66.4567219323658
|
| 1484 |
+
- type: dot_f1
|
| 1485 |
+
value: 70.64676616915423
|
| 1486 |
+
- type: dot_f1_threshold
|
| 1487 |
+
value: 45.55969536304474
|
| 1488 |
+
- type: dot_precision
|
| 1489 |
+
value: 57.028112449799195
|
| 1490 |
+
- type: dot_recall
|
| 1491 |
+
value: 92.81045751633987
|
| 1492 |
+
- type: euclidean_accuracy
|
| 1493 |
+
value: 66.77524429967427
|
| 1494 |
+
- type: euclidean_accuracy_threshold
|
| 1495 |
+
value: 94.24455165863037
|
| 1496 |
+
- type: euclidean_ap
|
| 1497 |
+
value: 66.4567219323658
|
| 1498 |
+
- type: euclidean_f1
|
| 1499 |
+
value: 70.64676616915423
|
| 1500 |
+
- type: euclidean_f1_threshold
|
| 1501 |
+
value: 104.34587001800537
|
| 1502 |
+
- type: euclidean_precision
|
| 1503 |
+
value: 57.028112449799195
|
| 1504 |
+
- type: euclidean_recall
|
| 1505 |
+
value: 92.81045751633987
|
| 1506 |
+
- type: main_score
|
| 1507 |
+
value: 66.4567219323658
|
| 1508 |
+
- type: manhattan_accuracy
|
| 1509 |
+
value: 66.77524429967427
|
| 1510 |
+
- type: manhattan_accuracy_threshold
|
| 1511 |
+
value: 2865.5345916748047
|
| 1512 |
+
- type: manhattan_ap
|
| 1513 |
+
value: 66.26659863769075
|
| 1514 |
+
- type: manhattan_f1
|
| 1515 |
+
value: 70.8542713567839
|
| 1516 |
+
- type: manhattan_f1_threshold
|
| 1517 |
+
value: 3212.3912811279297
|
| 1518 |
+
- type: manhattan_precision
|
| 1519 |
+
value: 57.55102040816327
|
| 1520 |
+
- type: manhattan_recall
|
| 1521 |
+
value: 92.15686274509804
|
| 1522 |
+
- type: max_accuracy
|
| 1523 |
+
value: 66.77524429967427
|
| 1524 |
+
- type: max_ap
|
| 1525 |
+
value: 66.4567219323658
|
| 1526 |
+
- type: max_f1
|
| 1527 |
+
value: 70.8542713567839
|
| 1528 |
+
- type: max_precision
|
| 1529 |
+
value: 57.55102040816327
|
| 1530 |
+
- type: max_recall
|
| 1531 |
+
value: 92.81045751633987
|
| 1532 |
+
- type: similarity_accuracy
|
| 1533 |
+
value: 66.77524429967427
|
| 1534 |
+
- type: similarity_accuracy_threshold
|
| 1535 |
+
value: 55.58975338935852
|
| 1536 |
+
- type: similarity_ap
|
| 1537 |
+
value: 66.4567219323658
|
| 1538 |
+
- type: similarity_f1
|
| 1539 |
+
value: 70.64676616915423
|
| 1540 |
+
- type: similarity_f1_threshold
|
| 1541 |
+
value: 45.55969536304474
|
| 1542 |
+
- type: similarity_precision
|
| 1543 |
+
value: 57.028112449799195
|
| 1544 |
+
- type: similarity_recall
|
| 1545 |
+
value: 92.81045751633987
|
| 1546 |
+
task:
|
| 1547 |
+
type: PairClassification
|
| 1548 |
license: mit
|
| 1549 |
+
language:
|
| 1550 |
+
- ru
|
| 1551 |
+
- en
|
| 1552 |
+
tags:
|
| 1553 |
+
- mteb
|
| 1554 |
+
- transformers
|
| 1555 |
+
- sentence-transformers
|
| 1556 |
+
base_model: ai-forever/FRED-T5-1.7B
|
| 1557 |
+
pipeline_tag: feature-extraction
|
| 1558 |
+
datasets:
|
| 1559 |
+
- ai-forever/solyanka
|
| 1560 |
---
|
| 1561 |
+
|
| 1562 |
+
# Model Card for FRIDA
|
| 1563 |
+
|
| 1564 |
+
<figure>
|
| 1565 |
+
<img src="img.jpg">
|
| 1566 |
+
</figure>
|
| 1567 |
+
|
| 1568 |
+
FRIDA is a full-scale finetuned general text embedding model inspired by denoising architecture based on T5. The model is based on the encoder part of [FRED-T5](https://arxiv.org/abs/2309.10931) model and continues research of text embedding models ([ruMTEB](https://arxiv.org/abs/2408.12503), [ru-en-RoSBERTa](https://huggingface.co/ai-forever/ru-en-RoSBERTa)). It has been pre-trained on a Russian-English dataset and fine-tuned for improved performance on the target task.
|
| 1569 |
+
|
| 1570 |
+
For more model details please refer to our [article](https://habr.com/ru/companies/sberdevices/articles/909924/) (RU).
|
| 1571 |
+
|
| 1572 |
+
## Usage
|
| 1573 |
+
|
| 1574 |
+
The model can be used as is with prefixes. It is recommended to use CLS pooling. The choice of prefix and pooling depends on the task.
|
| 1575 |
+
|
| 1576 |
+
We use the following basic rules to choose a prefix:
|
| 1577 |
+
- `"search_query: "` and `"search_document: "` prefixes are for answer or relevant paragraph retrieval
|
| 1578 |
+
- `"paraphrase: "` prefix is for symmetric paraphrasing related tasks (STS, paraphrase mining, deduplication)
|
| 1579 |
+
- `"categorize: "` prefix is for asymmetric matching of document title and body (e.g. news, scientific papers, social posts)
|
| 1580 |
+
- `"categorize_sentiment: "` prefix is for any tasks that rely on sentiment features (e.g. hate, toxic, emotion)
|
| 1581 |
+
- `"categorize_topic: "` prefix is intended for tasks where you need to group texts by topic
|
| 1582 |
+
- `"categorize_entailment: "` prefix is for textual entailment task (NLI)
|
| 1583 |
+
|
| 1584 |
+
To better tailor the model to your needs, you can fine-tune it with relevant high-quality Russian and English datasets.
|
| 1585 |
+
|
| 1586 |
+
Below are examples of texts encoding using the Transformers and SentenceTransformers libraries.
|
| 1587 |
+
|
| 1588 |
+
### Transformers
|
| 1589 |
+
|
| 1590 |
+
```python
|
| 1591 |
+
import torch
|
| 1592 |
+
import torch.nn.functional as F
|
| 1593 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 1594 |
+
|
| 1595 |
+
|
| 1596 |
+
def pool(hidden_state, mask, pooling_method="cls"):
|
| 1597 |
+
if pooling_method == "mean":
|
| 1598 |
+
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
|
| 1599 |
+
d = mask.sum(axis=1, keepdim=True).float()
|
| 1600 |
+
return s / d
|
| 1601 |
+
elif pooling_method == "cls":
|
| 1602 |
+
return hidden_state[:, 0]
|
| 1603 |
+
|
| 1604 |
+
inputs = [
|
| 1605 |
+
#
|
| 1606 |
+
"paraphrase: В Ярославской области разрешили работу бань, но без посетителей",
|
| 1607 |
+
"categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.",
|
| 1608 |
+
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?",
|
| 1609 |
+
#
|
| 1610 |
+
"paraphrase: Ярославским баням разрешили работать без посетителей",
|
| 1611 |
+
"categorize_entailment: Женщину спасают врачи.",
|
| 1612 |
+
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование."
|
| 1613 |
+
]
|
| 1614 |
+
|
| 1615 |
+
tokenizer = AutoTokenizer.from_pretrained("ai-forever/FRIDA")
|
| 1616 |
+
model = T5EncoderModel.from_pretrained("ai-forever/FRIDA")
|
| 1617 |
+
|
| 1618 |
+
tokenized_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors="pt")
|
| 1619 |
+
|
| 1620 |
+
with torch.no_grad():
|
| 1621 |
+
outputs = model(**tokenized_inputs)
|
| 1622 |
+
|
| 1623 |
+
embeddings = pool(
|
| 1624 |
+
outputs.last_hidden_state,
|
| 1625 |
+
tokenized_inputs["attention_mask"],
|
| 1626 |
+
pooling_method="cls" # or try "mean"
|
| 1627 |
+
)
|
| 1628 |
+
|
| 1629 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 1630 |
+
sim_scores = embeddings[:3] @ embeddings[3:].T
|
| 1631 |
+
print(sim_scores.diag().tolist())
|
| 1632 |
+
# [0.9360030293464661, 0.8591322302818298, 0.728583037853241]
|
| 1633 |
+
```
|
| 1634 |
+
|
| 1635 |
+
### SentenceTransformers
|
| 1636 |
+
|
| 1637 |
+
```python
|
| 1638 |
+
from sentence_transformers import SentenceTransformer
|
| 1639 |
+
|
| 1640 |
+
inputs = [
|
| 1641 |
+
#
|
| 1642 |
+
"paraphrase: В Ярославской области разрешили работу бань, но без посетителей",
|
| 1643 |
+
"categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.",
|
| 1644 |
+
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?",
|
| 1645 |
+
#
|
| 1646 |
+
"paraphrase: Ярославским баням разрешили работать без посетителей",
|
| 1647 |
+
"categorize_entailment: Женщину спасают врачи.",
|
| 1648 |
+
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование."
|
| 1649 |
+
]
|
| 1650 |
+
|
| 1651 |
+
# loads model with CLS pooling
|
| 1652 |
+
model = SentenceTransformer("ai-forever/FRIDA")
|
| 1653 |
+
|
| 1654 |
+
# embeddings are normalized by default
|
| 1655 |
+
embeddings = model.encode(inputs, convert_to_tensor=True)
|
| 1656 |
+
|
| 1657 |
+
sim_scores = embeddings[:3] @ embeddings[3:].T
|
| 1658 |
+
print(sim_scores.diag().tolist())
|
| 1659 |
+
# [0.9360026717185974, 0.8591331243515015, 0.7285830974578857]
|
| 1660 |
+
```
|
| 1661 |
+
|
| 1662 |
+
or using prompts (sentence-transformers>=2.4.0):
|
| 1663 |
+
|
| 1664 |
+
```python
|
| 1665 |
+
from sentence_transformers import SentenceTransformer
|
| 1666 |
+
|
| 1667 |
+
# loads model with CLS pooling
|
| 1668 |
+
model = SentenceTransformer("ai-forever/FRIDA")
|
| 1669 |
+
|
| 1670 |
+
paraphrase = model.encode(["В Ярославской области разрешили работу бань, но без посетителей", "Ярославским баням разрешили работать без посетителей"], prompt_name="paraphrase")
|
| 1671 |
+
print(paraphrase[0] @ paraphrase[1].T) # 0.9360032
|
| 1672 |
+
|
| 1673 |
+
categorize_entailment = model.encode(["Женщину доставили в больницу, за ее жизнь сейчас борются врачи.", "Женщину спасают врачи."], prompt_name="categorize_entailment")
|
| 1674 |
+
print(categorize_entailment[0] @ categorize_entailment[1].T) # 0.8591322
|
| 1675 |
+
|
| 1676 |
+
query_embedding = model.encode("Сколько программистов нужно, чтобы вкрутить лампочку?", prompt_name="search_query")
|
| 1677 |
+
document_embedding = model.encode("Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", prompt_name="search_document")
|
| 1678 |
+
print(query_embedding @ document_embedding.T) # 0.7285831
|
| 1679 |
+
```
|
| 1680 |
+
|
| 1681 |
+
## Authors
|
| 1682 |
+
+ [SaluteDevices](https://sberdevices.ru/) AI for B2C RnD Team.
|
| 1683 |
+
+ Artem Snegirev: [HF profile](https://huggingface.co/artemsnegirev), [Github](https://github.com/artemsnegirev);
|
| 1684 |
+
+ Anna Maksimova [HF profile](https://huggingface.co/anpalmak);
|
| 1685 |
+
+ Aleksandr Abramov: [HF profile](https://huggingface.co/Andrilko), [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko)
|
| 1686 |
+
|
| 1687 |
+
|
| 1688 |
+
## Citation
|
| 1689 |
+
|
| 1690 |
+
```
|
| 1691 |
+
@misc{TODO
|
| 1692 |
+
}
|
| 1693 |
+
```
|
| 1694 |
+
|
| 1695 |
+
## Limitations
|
| 1696 |
+
|
| 1697 |
+
The model is designed to process texts in Russian, the quality in English is unknown. Maximum input text length is limited to 512 tokens.
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "FRIDA",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"T5EncoderModel"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"classifier_dropout": 0.0,
|
| 8 |
+
"d_ff": 4096,
|
| 9 |
+
"d_kv": 64,
|
| 10 |
+
"d_model": 1536,
|
| 11 |
+
"decoder_start_token_id": 0,
|
| 12 |
+
"dense_act_fn": "gelu_new",
|
| 13 |
+
"dropout_rate": 0.1,
|
| 14 |
+
"eos_token_id": 2,
|
| 15 |
+
"feed_forward_proj": "gated-gelu",
|
| 16 |
+
"gradient_checkpointing": false,
|
| 17 |
+
"initializer_factor": 1.0,
|
| 18 |
+
"is_encoder_decoder": true,
|
| 19 |
+
"is_gated_act": true,
|
| 20 |
+
"layer_norm_epsilon": 1e-06,
|
| 21 |
+
"model_type": "t5",
|
| 22 |
+
"num_decoder_layers": 24,
|
| 23 |
+
"num_heads": 24,
|
| 24 |
+
"num_layers": 24,
|
| 25 |
+
"output_past": true,
|
| 26 |
+
"pad_token_id": 0,
|
| 27 |
+
"relative_attention_max_distance": 128,
|
| 28 |
+
"relative_attention_num_buckets": 32,
|
| 29 |
+
"tie_word_embeddings": false,
|
| 30 |
+
"torch_dtype": "float32",
|
| 31 |
+
"transformers_version": "4.40.1",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 93651
|
| 34 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.7.0",
|
| 4 |
+
"transformers": "4.40.1",
|
| 5 |
+
"pytorch": "2.2.1+cu118"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"paraphrase": "paraphrase: ",
|
| 9 |
+
"search_query": "search_query: ",
|
| 10 |
+
"search_document": "search_document: ",
|
| 11 |
+
"categorize": "categorize: ",
|
| 12 |
+
"categorize_sentiment": "categorize_sentiment: ",
|
| 13 |
+
"categorize_topic": "categorize_topic: ",
|
| 14 |
+
"categorize_entailment": "categorize_entailment: "
|
| 15 |
+
},
|
| 16 |
+
"default_prompt_name": null,
|
| 17 |
+
"similarity_fn_name": null
|
| 18 |
+
}
|
img.jpg
ADDED
|
Git LFS Details
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f48a05972031f3e9b4799b548a148215097f148332c8a68c3bf575497d6a0d43
|
| 3 |
+
size 3293631728
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<pad>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": true,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"pad_token": "<pad>",
|
| 53 |
+
"sep_token": "</s>",
|
| 54 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 55 |
+
"unk_token": "<unk>"
|
| 56 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|