File size: 16,103 Bytes
228af26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
"""
🌪️ STORM ORACLE — Tornado Super-Predictor (training-ready, no placeholders)
- RadarPatternExtractor: multi-scale CNN + spatial attention pooling
- AtmosphericConditionEncoder: per-variable MLPs -> tokens -> attention -> fused vector
- Heads: probability (sigmoid), EF (logits), location (reg), timing (reg), uncertainty (sigmoid)
- Calibration: single temperature parameter (learnable/fittable after training)
- ContinuousLearner: online fine-tuning with replay buffer and EMA weights
"""
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ----------------------------- Types ---------------------------------
@dataclass
class TornadoPredictionBatch:
"""All outputs are BATCH TENSORS (no Python scalars)."""
tornado_probability: torch.Tensor # (B,)
ef_scale_probs: torch.Tensor # (B,6)
most_likely_ef_scale: torch.Tensor # (B,)
location_offset: torch.Tensor # (B,2)
timing_predictions: torch.Tensor # (B,3)
uncertainty_scores: torch.Tensor # (B,4) in [0,1]
radar_signatures: torch.Tensor # (B,3) [hook, meso, couplet]
atmospheric_indicators: torch.Tensor # (B,3) [cape, shear_norm, instability]
logits: Optional[torch.Tensor] = None # (B,) pre-sigmoid (for calibration/loss)
# ---------------------- Building blocks --------------------------------
class SpatialAttentionPool(nn.Module):
"""
Turns a 2D feature map (B,C,H,W) into (B,C) using a learned query and MHA over H*W tokens.
"""
def __init__(self, channels: int, num_heads: int = 8):
super().__init__()
self.channels = channels
self.pos_embed = nn.Parameter(torch.randn(1, channels, 1)) # simple scalar per-channel bias over tokens
self.query = nn.Parameter(torch.randn(1, 1, channels)) # learned global query token
self.attn = nn.MultiheadAttention(embed_dim=channels, num_heads=num_heads, batch_first=True)
self.ln = nn.LayerNorm(channels)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (B,C,H,W) -> tokens: (B, H*W, C)
B, C, H, W = x.shape
tokens = x.view(B, C, H * W).transpose(1, 2) # (B, HW, C)
tokens = self.ln(tokens + self.pos_embed.expand(B, C, 1).transpose(1, 2)) # broadcast mild bias
q = self.query.expand(B, -1, -1) # (B,1,C)
pooled, _ = self.attn(q, tokens, tokens) # (B,1,C)
return pooled.squeeze(1) # (B,C)
class RadarPatternExtractor(nn.Module):
"""
Advanced radar pattern extraction with spatial attention pooling.
Accepts variable input_channels (e.g., 3×T for T time steps).
"""
def __init__(self, input_channels: int = 3):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, padding=3)
self.conv2 = nn.Conv2d(64, 128, kernel_size=5, padding=2)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(512)
# Specialized detectors
self.hook_echo_detector = nn.Conv2d(512, 64, kernel_size=3, padding=1)
self.mesocyclone_detector = nn.Conv2d(512, 64, kernel_size=5, padding=2)
self.velocity_couplet_detector = nn.Conv2d(512, 64, kernel_size=3, padding=1)
# Attention pooling to summarize (B,512,H',W') -> (B,512)
self.pool = SpatialAttentionPool(512, num_heads=8)
# Combine base + specialists -> 512 + 64*3 = 704 -> project to 1024
self.proj = nn.Sequential(
nn.Linear(512 + 64 * 3, 1024),
nn.ReLU(),
nn.Dropout(0.5),
)
def forward(self, radar_data: torch.Tensor) -> Dict[str, torch.Tensor]:
# radar_data: (B,C,H,W)
x = F.relu(self.conv1(radar_data)); x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x)); x = F.max_pool2d(x, 2)
x = F.relu(self.conv3(x)); x = F.max_pool2d(x, 2)
x = F.relu(self.conv4(x)); x = self.bn4(x)
hook = F.relu(self.hook_echo_detector(x))
meso = F.relu(self.mesocyclone_detector(x))
vel = F.relu(self.velocity_couplet_detector(x))
base_vec = self.pool(x) # (B,512)
hook_vec = hook.mean(dim=(2, 3)) # (B,64)
meso_vec = meso.mean(dim=(2, 3)) # (B,64)
vel_vec = vel.mean(dim=(2, 3)) # (B,64)
fused = torch.cat([base_vec, hook_vec, meso_vec, vel_vec], dim=1) # (B,704)
combined = self.proj(fused) # (B,1024)
strengths = torch.stack([
hook_vec.mean(dim=1), # (B,)
meso_vec.mean(dim=1), # (B,)
vel_vec.mean(dim=1), # (B,)
], dim=1) # (B,3)
return {
"combined_features": combined,
"signature_strengths": strengths, # hook, meso, velocity couplet
}
class AtmosphericConditionEncoder(nn.Module):
"""
Encode environmental parameters using per-variable MLPs, then treat them as tokens and apply MHA.
"""
def __init__(self):
super().__init__()
self.enc_cape = nn.Linear(1, 32)
self.enc_shear = nn.Linear(4, 64) # 0–1, 0–3, 0–6, deep
self.enc_helicity = nn.Linear(2, 32) # 0–1, 0–3
self.enc_temp = nn.Linear(3, 32) # sfc, 850, 500
self.enc_dewpoint = nn.Linear(2, 32) # sfc, 850
self.enc_pressure = nn.Linear(1, 16)
# we will embed each of the 6 groups to dim=64 and self-attend
self.to_64 = nn.ModuleDict({
"cape": nn.Linear(32, 64),
"shear": nn.Identity(), # already 64
"helicity": nn.Linear(32, 64),
"temp": nn.Linear(32, 64),
"dewpoint": nn.Linear(32, 64),
"pressure": nn.Linear(16, 64),
})
self.ln = nn.LayerNorm(64)
self.attn = nn.MultiheadAttention(embed_dim=64, num_heads=4, batch_first=True)
self.fuse = nn.Sequential(
nn.Linear(64 * 6, 256),
nn.ReLU(),
nn.Dropout(0.3),
)
def forward(self, atmo: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
def ensure_2d(t: torch.Tensor, d: int) -> torch.Tensor:
# make (B,d)
t = t if t.ndim == 2 else t.view(-1, d)
return t
cape = ensure_2d(atmo.get("cape", torch.zeros(1, 1, device=next(self.parameters()).device)), 1)
shear= ensure_2d(atmo.get("wind_shear", torch.zeros(1, 4, device=next(self.parameters()).device)), 4)
hel = ensure_2d(atmo.get("helicity", torch.zeros(1, 2, device=next(self.parameters()).device)), 2)
temp = ensure_2d(atmo.get("temperature", torch.zeros(1, 3, device=next(self.parameters()).device)), 3)
dew = ensure_2d(atmo.get("dewpoint", torch.zeros(1, 2, device=next(self.parameters()).device)), 2)
pres = ensure_2d(atmo.get("pressure", torch.zeros(1, 1, device=next(self.parameters()).device)), 1)
cape_e = F.relu(self.enc_cape(cape)) # (B,32)
shear_e= F.relu(self.enc_shear(shear)) # (B,64)
hel_e = F.relu(self.enc_helicity(hel)) # (B,32)
temp_e = F.relu(self.enc_temp(temp)) # (B,32)
dew_e = F.relu(self.enc_dewpoint(dew)) # (B,32)
pres_e = F.relu(self.enc_pressure(pres)) # (B,16)
tokens = torch.stack([
self.ln(self.to_64["cape"](cape_e)),
self.ln(self.to_64["shear"](shear_e)),
self.ln(self.to_64["helicity"](hel_e)),
self.ln(self.to_64["temp"](temp_e)),
self.ln(self.to_64["dewpoint"](dew_e)),
self.ln(self.to_64["pressure"](pres_e)),
], dim=1) # (B, 6, 64)
attn_out, _ = self.attn(tokens, tokens, tokens) # (B,6,64)
fused = self.fuse(attn_out.reshape(attn_out.size(0), -1)) # (B,256)
# easy indicators for explanations/QA
shear_mag = torch.linalg.vector_norm(shear, dim=-1) # (B,)
instab = cape.squeeze(-1) * shear_mag # (B,)
return {
"atmospheric_features": fused, # (B,256)
"cape_score": cape.squeeze(-1), # (B,)
"shear_magnitude": shear_mag, # (B,)
"instability_index": instab, # (B,)
}
# -------------------------- Main model --------------------------------
class TornadoSuperPredictor(nn.Module):
def __init__(self, in_channels: int = 3):
super().__init__()
self.radar_extractor = RadarPatternExtractor(input_channels=in_channels)
self.atmo_encoder = AtmosphericConditionEncoder()
fused_dim = 1024 + 256
self.prob_head = nn.Sequential(
nn.Linear(fused_dim, 512), nn.ReLU(), nn.Dropout(0.4),
nn.Linear(512, 256), nn.ReLU(),
nn.Linear(256, 1)
)
self.ef_head = nn.Sequential(
nn.Linear(fused_dim, 512), nn.ReLU(), nn.Dropout(0.4),
nn.Linear(512, 6)
)
self.loc_head = nn.Sequential(
nn.Linear(fused_dim, 512), nn.ReLU(), nn.Dropout(0.4),
nn.Linear(512, 2)
)
self.time_head = nn.Sequential(
nn.Linear(fused_dim, 512), nn.ReLU(), nn.Dropout(0.4),
nn.Linear(512, 3)
)
self.unc_head = nn.Sequential(
nn.Linear(fused_dim, 256), nn.ReLU(),
nn.Linear(256, 4)
)
# temperature parameter for calibration (start at 1.0)
self.register_parameter("log_temperature", nn.Parameter(torch.zeros(())))
self._init_weights()
def _init_weights(self):
for m in self.modules():
if isinstance(m, (nn.Linear, nn.Conv2d)):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
else:
nn.init.kaiming_uniform_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.zeros_(m.bias)
@property
def temperature(self) -> torch.Tensor:
return torch.exp(self.log_temperature) # positive
def forward(self, radar_x: torch.Tensor, atmo: Dict[str, torch.Tensor]) -> TornadoPredictionBatch:
# radar_x: (B,C,H,W), atmo: dict of (B,dim)
r = self.radar_extractor(radar_x)
a = self.atmo_encoder(atmo)
fused = torch.cat([r["combined_features"], a["atmospheric_features"]], dim=1) # (B,1280)
logits = self.prob_head(fused).squeeze(-1) # (B,)
logits = logits / self.temperature.clamp_min(1e-6) # calibrated logits
probs = torch.sigmoid(logits) # (B,)
ef_logits = self.ef_head(fused) # (B,6)
ef_probs = F.softmax(ef_logits, dim=-1)
ef_idx = ef_probs.argmax(dim=-1)
loc = self.loc_head(fused) # (B,2)
tim = self.time_head(fused) # (B,3)
unc = torch.sigmoid(self.unc_head(fused)) # (B,4) in [0,1]
return TornadoPredictionBatch(
tornado_probability=probs,
ef_scale_probs=ef_probs,
most_likely_ef_scale=ef_idx,
location_offset=loc,
timing_predictions=tim,
uncertainty_scores=unc,
radar_signatures=r["signature_strengths"],
atmospheric_indicators=torch.stack([
a["cape_score"], a["shear_magnitude"], a["instability_index"]
], dim=1),
logits=logits,
)
# --------------------- Continuous learning wrapper --------------------
class ContinuousLearner(nn.Module):
"""
Light wrapper that adds:
- optimizer + (optional) pos_weight or focal loss
- EMA weights for stable inference during online updates
- small replay buffer to avoid catastrophic forgetting
"""
def __init__(
self,
model: TornadoSuperPredictor,
lr: float = 1e-4,
wd: float = 1e-4,
use_focal: bool = False,
pos_weight: Optional[float] = None,
ema_decay: float = 0.999,
replay_capacity: int = 2048,
device: Optional[torch.device] = None,
):
super().__init__()
self.model = model
self.device = device or next(model.parameters()).device
self.opt = torch.optim.AdamW(self.model.parameters(), lr=lr, weight_decay=wd)
self.use_focal = use_focal
self.pos_weight = None if pos_weight is None else torch.tensor(pos_weight, device=self.device)
self.ema_decay = ema_decay
# EMA weights
self.shadow = {k: v.detach().clone() for k, v in self.model.state_dict().items()}
self.replay_capacity = replay_capacity
self._replay = [] # list of tuples (radar_x, atmo_dict, y)
def _bce_loss(self, logits: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
if self.pos_weight is not None:
return F.binary_cross_entropy_with_logits(logits, y.float(), pos_weight=self.pos_weight)
return F.binary_cross_entropy_with_logits(logits, y.float())
def _focal_loss(self, logits: torch.Tensor, y: torch.Tensor, gamma: float = 2.0, alpha: float = 0.5) -> torch.Tensor:
p = torch.sigmoid(logits)
pt = p * y + (1 - p) * (1 - y)
w = (1 - pt).pow(gamma)
at = alpha * y + (1 - alpha) * (1 - y)
loss = -(y * torch.log(p.clamp_min(1e-9)) + (1 - y) * torch.log((1 - p).clamp_min(1e-9))) * w * at
return loss.mean()
@torch.no_grad()
def _update_ema(self):
for k, v in self.model.state_dict().items():
self.shadow[k].mul_(self.ema_decay).add_(v, alpha=(1.0 - self.ema_decay))
def train_step(self, radar_x: torch.Tensor, atmo: Dict[str, torch.Tensor], y: torch.Tensor) -> Dict[str, float]:
self.model.train()
out = self.model(radar_x, atmo) # contains logits & probs
if self.use_focal:
loss = self._focal_loss(out.logits, y)
else:
loss = self._bce_loss(out.logits, y)
self.opt.zero_grad(set_to_none=True)
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.opt.step()
self._update_ema()
# push to replay
if self.replay_capacity > 0:
with torch.no_grad():
if len(self._replay) >= self.replay_capacity:
self._replay.pop(0)
# store small detached copy (avoid GPU memory blowup)
self._replay.append((
radar_x.detach().cpu(),
{k: v.detach().cpu() for k, v in atmo.items()},
y.detach().cpu()
))
with torch.no_grad():
prob = out.tornado_probability.mean().item()
return {"loss": float(loss.item()), "avg_prob": prob}
@torch.no_grad()
def ema_state_dict(self) -> Dict[str, torch.Tensor]:
return {k: v.clone() for k, v in self.shadow.items()}
@torch.no_grad()
def load_ema_weights(self):
self.model.load_state_dict(self.ema_state_dict())
def replay_step(self, batch_size: int = 16) -> Optional[Dict[str, float]]:
if not self._replay:
return None
import random
idxs = random.sample(range(len(self._replay)), k=min(batch_size, len(self._replay)))
xs = torch.cat([self._replay[i][0] for i in idxs], dim=0).to(self.device)
ys = torch.cat([self._replay[i][2] for i in idxs], dim=0).to(self.device)
atmo = {}
# stack dict fields
keys = list(self._replay[idxs[0]][1].keys())
for k in keys:
atmo[k] = torch.cat([self._replay[i][1][k] for i in idxs], dim=0).to(self.device)
return self.train_step(xs, atmo, ys)
|