--- license: apache-2.0 --- ### Important Links 📖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) | 🤖[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) | 🌐[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) | 🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) | 💻[ModelScope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B) ## Introduction We are excited to update our new XiYanSQL-QwenCoder series model, demonstrating improvements over its predecessor in some key features. - The new XiYanSQL-QwenCoder model applies the merits of GRPO training strategy without thinking process, maintaining high efficiency and accuracy in SQL generation. - The new XiYanSQL-QwenCoder model keeps its great performance in various benchmarks, including BIRD, Spider and DW benchmarks which will be released in the future. - The new XiYanSQL-QwenCoder model demonstrates better generalization than its predecessor, especially in different dialects and out-of-domain datasets. ## Model Downloads | **Model** | **Download Latest** | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |XiYanSQL-QwenCoder-7B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) | |XiYanSQL-QwenCoder-32B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) | ## Performance The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects. | Model name | Size | BIRD Dev@M-Schema | BIRD Dev@DDL | Spider Test@M-Schema | Spider Test@DDL | DW PostgreSQL@M-Schema | DW MySQL@M-Schema | |------------------------------|:------:|:-----------------:|:------------:|:--------------------:|:---------------:|:----------------------:|:-----------------:| | GPT-4o-0806 | UNK | 58.47% | 54.82% | 82.89% | 78.45% | 46.79% | 57.77% | | GPT-4.1-0414 | UNK | 59.39% | 54.11% | 84.45% | 79.86% | 54.29% | 63.18% | | Claude3.5-sonnet-1022 | UNK | 53.32% | 50.46% | 76.27% | 73.04% | 55.22% | 52.84% | | Claude3.7-sonnet | UNK | 54.82% | 49.22% | 78.04% | 74.66% | 53.23% | 54.61% | | Gemini-1.5-Pro | UNK | 61.34% | 57.89% | 85.11% | 84.00% | 52.78% | 62.78% | | Gemini-2.5-Pro | UNK | 67.21% | 63.43% | 88.29% | 86.27% | 63.16% | 65.37% | | DeepSeek-V2.5-1210 | 236B | 55.74% | 55.61% | 82.08% | 80.57% | 45.74% | 52.18% | | DeepSeek-V3 | 685B | 59.58% | 56.71% | 81.52% | 79.91% | 52.56% | 55.95% | | DeepSeek-R1 | 685B | 58.15% | 55.61% | 80.72% | 78.85% | 60.56% | xx% | | DeepSeek-R1-Distill-Qwen-32B | 32B | 50.65% | 48.31% | 78.65% | 77.33% | 37.22% | 44.72% | | Deepseek-Coder-33B-Instruct | 33B | 47.52% | 44.72% | 72.39% | xx% | 31.48% | 36.17% | | OmniSQL-32B | 32B | 60.37% | 55.87% | 85.16% | 83.19% | 38.19% | 42.34% | | XiYanSQL-QwenCoder-32B-2412 | 32B | 67.07% | 63.04% | 88.39% | 85.46% | 45.07% | 52.84% | | XiYanSQL-QwenCoder-32B-2504 | 32B | 67.14% | 62.26% | 89.20% | 86.17% | 53.52% | 57.74% | ## Requirements transformers >= 4.37.0 vllm >= 0.7.2 ## Quickstart with Transformers and vLLM Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. ### Prompt Template ```python nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 【用户问题】 {question} 【数据库schema】 {db_schema} 【参考信息】 {evidence} 【用户问题】 {question} ```sql""" ``` ### Inference with Transformers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") message = [{'role': 'user', 'content': prompt}] text = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, temperature=0.1, top_p=0.8, do_sample=True, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Inference with vLLM ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502" llm = LLM(model=model_path, tensor_parallel_size=8) tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams( n=1, temperature=0.1, max_tokens=2048 ) ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") message = [{'role': 'user', 'content': prompt}] text = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) outputs = llm.generate([text], sampling_params=sampling_params) response = outputs[0].outputs[0].text ``` ## Acknowledgments If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!