File size: 1,346 Bytes
2838a80 d8b9bb8 2838a80 0e34137 b8baede 801a4de b8baede 801a4de b8baede 801a4de afff7c2 801a4de afff7c2 801a4de 2838a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
base_model: YituTech/conv-bert-base
library_name: transformers.js
---
https://huggingface.co/YituTech/conv-bert-base with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Feature extraction w/ `Xenova/conv-bert-base`.
```javascript
import { pipeline } from '@huggingface/transformers';
// Create feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/conv-bert-base');
// Perform feature extraction
const output = await extractor('This is a test sentence.');
console.log(output)
// Tensor {
// dims: [ 1, 8, 768 ],
// type: 'float32',
// data: Float32Array(6144) [ -0.13742968440055847, -0.6912388205528259, ... ],
// size: 6144
// }
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |