File size: 1,349 Bytes
0a87a75
fa72a67
0a87a75
 
 
 
 
16f1ec9
 
813d4e4
a22c79e
813d4e4
a22c79e
 
 
 
 
813d4e4
a22c79e
 
f5dc3d3
a22c79e
 
f5dc3d3
a22c79e
 
 
 
 
 
 
 
 
 
 
0a87a75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
base_model: YituTech/conv-bert-small
library_name: transformers.js
---

https://huggingface.co/YituTech/conv-bert-small with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

**Example:** Feature extraction w/ `Xenova/conv-bert-small`.

```javascript
import { pipeline } from '@huggingface/transformers';

// Create feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/conv-bert-small');

// Perform feature extraction
const output = await extractor('This is a test sentence.');
console.log(output)
// Tensor {
//   dims: [ 1, 8, 256 ],
//   type: 'float32',
//   data: Float32Array(2048) [ -0.09434918314218521, 0.5715903043746948, ... ],
//   size: 2048
// }
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).