File size: 1,770 Bytes
99200a9
35ef036
 
 
 
e6178ec
35ef036
99200a9
35ef036
 
 
 
 
99200a9
 
 
e6178ec
99200a9
e6178ec
99200a9
7cb68f8
99200a9
7cb68f8
99200a9
 
e6178ec
99200a9
e6178ec
7cb68f8
99200a9
e6178ec
 
7cb68f8
e6178ec
99200a9
e6178ec
 
 
 
 
 
 
 
 
99200a9
e6178ec
 
 
 
99200a9
 
e6178ec
99200a9
7cb68f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: jinaai/jina-embeddings-v2-base-zh
language:
- zh
- en
library_name: transformers.js
license: apache-2.0
tags:
- feature-extraction
- sentence-similarity
- mteb
- sentence_transformers
- transformers
inference: false
---

https://huggingface.co/jinaai/jina-embeddings-v2-base-zh with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

You can then use the model to compute embeddings, as follows:

```js
import { pipeline, cos_sim } from '@huggingface/transformers';

// Create a feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/jina-embeddings-v2-base-zh', {
    dtype: "fp32"  // Options: "fp32", "fp16", "q8", "q4"
});

// Compute sentence embeddings
const texts = ['How is the weather today?', '今天天气怎么样?'];
const output = await extractor(texts, { pooling: 'mean', normalize: true });
// Tensor {
//   dims: [2, 768],
// 	 type: 'float32',
//   data: Float32Array(1536)[...],
// 	 size: 1536
// }

// Compute cosine similarity between the two embeddings
const score = cos_sim(output[0].data, output[1].data);
console.log(score);
// 0.7860610759096025
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).