import os import torch import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm import torch.nn as nn from torchvision import models import torch.nn.functional as F from torchvision import transforms from torch.utils.data import Dataset, DataLoader from typing import Dict, List, Tuple, Optional, Union from dataclasses import dataclass import warnings warnings.filterwarnings('ignore') # ---------------------------- # Configuration # ---------------------------- @dataclass class InferenceConfig: # Model Configuration model_name: str = "resnet34" embedding_dim: int = 128 normalize_embeddings: bool = True checkpoint_path: str = "../../model/models_checkpoints/best_model.pth" # Inference Settings batch_size: int = 32 device: str = "cuda" if torch.cuda.is_available() else "cpu" distance_threshold: float = 0.5 # Will be loaded from checkpoint # Data Settings remove_bg: bool = False num_workers: int = 4 # Global configuration CONFIG = InferenceConfig() # ---------------------------- # Model Architecture (Same as training) # ---------------------------- class ResNetBackbone(nn.Module): """ResNet backbone feature extractor.""" def __init__(self, model_name: str = "resnet34"): super().__init__() if model_name == "resnet18": self.resnet = models.resnet18(weights=None) elif model_name == "resnet34": self.resnet = models.resnet34(weights=None) elif model_name == "resnet50": self.resnet = models.resnet50(weights=None) else: raise ValueError(f"Unsupported model_name: {model_name}") # Remove the fully connected layer self.resnet.fc = nn.Identity() # Get output dimension with torch.no_grad(): dummy = torch.randn(1, 3, 224, 224) self.output_dim = self.resnet(dummy).shape[1] def forward(self, x: torch.Tensor) -> torch.Tensor: return self.resnet(x) class AdvancedEmbeddingHead(nn.Module): """Embedding head to project features to embedding space.""" def __init__(self, input_dim: int, embedding_dim: int, dropout: float = 0.5): super().__init__() self.input_dim = input_dim self.embedding_dim = embedding_dim if input_dim > embedding_dim * 4: hidden_dim = max(embedding_dim * 2, input_dim // 4) self.layers = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, embedding_dim * 2), nn.LayerNorm(embedding_dim * 2), nn.GELU(), nn.Dropout(dropout / 2), nn.Linear(embedding_dim * 2, embedding_dim), nn.LayerNorm(embedding_dim) ) else: self.layers = nn.Sequential( nn.Linear(input_dim, embedding_dim), nn.LayerNorm(embedding_dim) ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.flatten(1) return self.layers(x) class SiameseSignatureNetwork(nn.Module): """Siamese network for signature verification.""" def __init__(self, config: InferenceConfig = CONFIG): super().__init__() self.config = config # Initialize backbone self.backbone = ResNetBackbone(model_name=config.model_name) backbone_dim = self.backbone.output_dim # Initialize embedding head self.embedding_head = AdvancedEmbeddingHead( input_dim=backbone_dim, embedding_dim=config.embedding_dim, dropout=0.0 # No dropout during inference ) self.normalize_embeddings = config.normalize_embeddings self.distance_threshold = config.distance_threshold def forward(self, img1: torch.Tensor, img2: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Forward pass for inference.""" # Extract features f1 = self.backbone(img1) f2 = self.backbone(img2) # Get embeddings emb1 = self.embedding_head(f1) emb2 = self.embedding_head(f2) # Normalize if configured if self.normalize_embeddings: emb1 = F.normalize(emb1, p=2, dim=1) emb2 = F.normalize(emb2, p=2, dim=1) return emb1, emb2 def predict_pair(self, img1: torch.Tensor, img2: torch.Tensor, threshold: Optional[float] = None) -> Dict[str, torch.Tensor]: """Predict similarity between image pairs.""" self.eval() with torch.no_grad(): emb1, emb2 = self(img1, img2) distances = F.pairwise_distance(emb1, emb2) thresh = threshold if threshold is not None else self.distance_threshold predictions = (distances < thresh).long() # Convert distance to similarity score (0-1, higher is more similar) similarities = 1.0 / (1.0 + distances) return { 'predictions': predictions, 'distances': distances, 'similarities': similarities, 'threshold': torch.tensor(thresh) } # ---------------------------- # Dataset for Batch Prediction # ---------------------------- class PredictionDataset(Dataset): """Dataset for batch prediction from Excel.""" def __init__(self, excel_path: str, image_folder: str, config: InferenceConfig = CONFIG): self.image_folder = image_folder self.config = config self.data = pd.read_excel(excel_path) self.transform = self._get_transforms() # Check required columns required_cols = ['image_1_path', 'image_2_path'] missing_cols = [col for col in required_cols if col not in self.data.columns] if missing_cols: raise ValueError(f"Missing required columns: {missing_cols}") def _get_transforms(self) -> transforms.Compose: """Get image transforms for inference.""" return transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) def __len__(self) -> int: return len(self.data) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]: """Return image pair and index.""" row = self.data.iloc[idx] img1 = self._load_image(row['image_1_path']) img2 = self._load_image(row['image_2_path']) return img1, img2, idx def _load_image(self, image_path: str) -> torch.Tensor: """Load and transform image.""" image = replace_background_with_white( image_path, self.image_folder, remove_bg=self.config.remove_bg ) return self.transform(image) # ---------------------------- # Image Processing # ---------------------------- def estimate_background_color_pil(image: Image.Image, border_width: int = 10, method: str = "median") -> np.ndarray: """Estimate background color from image borders.""" if image.mode != 'RGB': image = image.convert('RGB') np_img = np.array(image) h, w, _ = np_img.shape # Extract border pixels top = np_img[:border_width, :, :].reshape(-1, 3) bottom = np_img[-border_width:, :, :].reshape(-1, 3) left = np_img[:, :border_width, :].reshape(-1, 3) right = np_img[:, -border_width:, :].reshape(-1, 3) all_border_pixels = np.concatenate([top, bottom, left, right], axis=0) if method == "mean": return np.mean(all_border_pixels, axis=0).astype(np.uint8) else: return np.median(all_border_pixels, axis=0).astype(np.uint8) def replace_background_with_white(image_name: str, folder_img: str, tolerance: int = 40, method: str = "median", remove_bg: bool = False) -> Image.Image: """Replace background with white based on border color estimation.""" image_path = os.path.join(folder_img, image_name) image = Image.open(image_path).convert("RGB") if not remove_bg: return image np_img = np.array(image) bg_color = estimate_background_color_pil(image, method=method) # Create mask for background pixels diff = np.abs(np_img.astype(np.int32) - bg_color.astype(np.int32)) mask = np.all(diff < tolerance, axis=2) # Replace background with white result = np_img.copy() result[mask] = [255, 255, 255] return Image.fromarray(result) # ---------------------------- # Main Prediction Class # ---------------------------- class SignatureVerifier: """Main class for signature verification predictions.""" def __init__(self, config: InferenceConfig = CONFIG): self.config = config self.device = torch.device(config.device) self.model = self._load_model() self.transform = self._get_transforms() def _get_transforms(self) -> transforms.Compose: """Get image transforms.""" return transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) def _load_model(self) -> SiameseSignatureNetwork: """Load model from checkpoint.""" print(f"Loading model from: {self.config.checkpoint_path}") # Initialize model model = SiameseSignatureNetwork(self.config) # Load checkpoint checkpoint = torch.load(self.config.checkpoint_path, map_location=self.device, weights_only=False) # Load model state if 'model_state_dict' in checkpoint: model.load_state_dict(checkpoint['model_state_dict']) else: # If checkpoint is just the state dict model.load_state_dict(checkpoint) # Load threshold if available if 'prediction_threshold' in checkpoint: model.distance_threshold = checkpoint['prediction_threshold'] print(f"Loaded threshold: {model.distance_threshold:.4f}") # Load best EER if available if 'best_eer' in checkpoint: print(f"Model best EER: {checkpoint['best_eer']:.4f}") model = model.to(self.device) model.eval() print("Model loaded successfully!") return model def predict_single_pair(self, image1_path: str, image2_path: str, image_folder: str = "") -> Dict[str, float]: """Predict similarity for a single pair of images.""" # Load images img1 = replace_background_with_white( image1_path, image_folder, remove_bg=self.config.remove_bg ) img2 = replace_background_with_white( image2_path, image_folder, remove_bg=self.config.remove_bg ) # Transform img1_tensor = self.transform(img1).unsqueeze(0).to(self.device) img2_tensor = self.transform(img2).unsqueeze(0).to(self.device) # Predict results = self.model.predict_pair(img1_tensor, img2_tensor) return { 'is_genuine': bool(results['predictions'].item()), 'distance': float(results['distances'].item()), 'similarity_score': float(results['similarities'].item()), 'threshold': float(results['threshold'].item()) } def predict_from_excel(self, excel_path: str, image_folder: str, output_path: Optional[str] = None) -> pd.DataFrame: """Batch prediction from Excel file.""" # Create dataset and dataloader dataset = PredictionDataset(excel_path, image_folder, self.config) dataloader = DataLoader( dataset, batch_size=self.config.batch_size, shuffle=False, num_workers=self.config.num_workers, pin_memory=True ) # Prediction storage all_predictions = [] all_distances = [] all_similarities = [] # Predict in batches print(f"Processing {len(dataset)} pairs...") with torch.no_grad(): for img1_batch, img2_batch, indices in tqdm(dataloader): img1_batch = img1_batch.to(self.device) img2_batch = img2_batch.to(self.device) results = self.model.predict_pair(img1_batch, img2_batch) all_predictions.extend(results['predictions'].cpu().numpy()) all_distances.extend(results['distances'].cpu().numpy()) all_similarities.extend(results['similarities'].cpu().numpy()) # Create results dataframe results_df = dataset.data.copy() results_df['prediction'] = all_predictions results_df['is_genuine'] = results_df['prediction'].astype(bool) results_df['distance'] = all_distances results_df['similarity_score'] = all_similarities results_df['threshold'] = self.model.distance_threshold # Save if output path provided if output_path: results_df.to_excel(output_path, index=False) print(f"Results saved to: {output_path}") return results_df def update_threshold(self, new_threshold: float): """Update the decision threshold.""" self.model.distance_threshold = new_threshold print(f"Threshold updated to: {new_threshold:.4f}") # Initialize verifier config = InferenceConfig( checkpoint_path="../../../../model/models_checkpoints/fa7e1bdc01814016ac8220bfbf1eb691/best_model.pth", batch_size=32, device="cuda" if torch.cuda.is_available() else "cpu" ) verifier = SignatureVerifier(config) ''' # Example 1: Single pair prediction print("\n--- Single Pair Prediction ---") result = verifier.predict_single_pair( image1_path="sig1.png", image2_path="sig2.png", image_folder="../../data/classify/preprared_data/images/" ) ''' # Example 2: Batch prediction from Excel print("\n--- Batch Prediction from Excel ---") results_df = verifier.predict_from_excel( excel_path="../../../../data/classify/preprared_data/labels/test_pairs_balanced_v12.xlsx", image_folder="../../../../data/classify/preprared_data/images/", output_path="./predictions_output.xlsx" ) # Print summary genuine_count = results_df['is_genuine'].sum() total_count = len(results_df) print(f"\nPrediction Summary:") print(f"Total pairs: {total_count}") print(f"Genuine predictions: {genuine_count} ({100*genuine_count/total_count:.1f}%)") print(f"Forged predictions: {total_count - genuine_count} ({100*(total_count-genuine_count)/total_count:.1f}%)")